RESUMO
Background: White-rot fungi and bacteria communities are unique ecosystems with different types of symbiotic interactions occurring during wood decomposition, such as cooperation, mutualism, nutritional competition, and antagonism. The role of chitin-active lytic polysaccharide monooxygenases (LPMOs) in these symbiotic interactions is the subject of this study. Method: In this study, bioinformatics tools were used to analyze the sequence and structure of putative LPMOs mined by hidden Markov model (HMM) profiles from the bacterial metagenomic DNA database of collected humus samples around white-rot fungi in Cuc Phuong primary forest, Vietnam. Two genes encoding putative LPMOs were expressed in E. coli and purified for enzyme activity assay. Result: Thirty-one full-length proteins annotated as putative LPMOs according to HMM profiles were confirmed by amino acid sequence comparison. The comparison results showed that although the amino acid sequences of the proteins were very different, they shared nine conserved amino acids, including two histidine and one phenylalanine that characterize the H1-Hx-Yz motif of the active site of bacterial LPMOs. Structural analysis of these proteins revealed that they are multidomain proteins with different functions. Prediction of the catalytic domain 3-D structure of these putative LPMOs using Alphafold2 showed that their spatial structures were very similar in shape, although their protein sequences were very different. The results of testing the activity of proteins GL0247266 and GL0183513 show that they are chitin-active LPMOs. Prediction of the 3-D structures of these two LPMOs using Alphafold2 showed that GL0247266 had five functional domains, while GL0183513 had four functional domains, two of which that were similar to the GbpA_2 and GbpA_3 domains of protein GbpA of Vibrio cholerae bacteria. The GbpA_2 - GbpA_3 complex was also detected in 11 other proteins. Based on the structural characteristics of functional domains, it is possible to hypothesize the role of chitin-active GbpA-like LPMOs in the relationship between fungal and bacterial communities coexisting on decomposing trees in primary forests.
Assuntos
Oxigenases de Função Mista , Vietnã , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Florestas , Quitina/metabolismo , Metagenômica , Metagenoma , Sequência de AminoácidosRESUMO
In this work, magnesium oxide nanoparticles supported biochar derived from tea wastes (MgO@TBC) was prepared as an effective adsorbent for removing hazardous o-chlorophenol (o-CP) from industrial wastewater. The surface area, porous structure, surface functional groups and surface charge of tea waste biochar (TBC) significantly enhanced after the modification process. The best uptake performance of o-CP was found at pH = 6.5 and 0.1 g of MgO@TBC adsorbent. According to the adsorption isotherm, the adsorption of o-CP onto MgO@TBC followed the Langmuir model with a maximum uptake capacity of 128.7 mg/g, which was 26.5% higher than TBC (94.6 mg/g). MgO@TBC could be reused for eight cycles with a high o-CP uptake performance (over 60%). Besides, it also exhibited good removal performance of o-CP from industrial wastewater with a removal rate of 81.7%. The adsorption behaviors of o-CP onto MgO@TBC are discussed based on the experimental results. This work may provide information to prepare an effective adsorbent for removing hazardous organic contaminants in wastewater.
Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Magnésio/química , Águas Residuárias , Adsorção , Cinética , Poluentes Químicos da Água/análise , Carvão Vegetal/química , CháRESUMO
The TiO2/SiO2 nanocomposite has been synthesized by a sol-gel method and investigated the effect of the SiO2 content (0, 5, 10, 15, 20, and 50%) on the rutile-to-anatase phase transition of TiO2 NPs. In order to increase the photocatalytic efficiency of the nanocomposite and decrease the price of material, the TiO2/SiO2 Nc with content SiO2 of 15% sample is chosen for preparing silicate coating. The efficiency of photocatalytic MB and antibacterial ability in the air of W silicate coating (adding TiO2/SiO2 Nc (15%)) achieve almost 100% for 60 h and 94.35% for 3 h, respectively. While the efficiency of photocatalytic MB and antibacterial ability of WO silicate coating (adding commercial TiO2/SiO2) is about 25-30% for 60 h and 6.02% for 3 h, respectively. The presence of TiO2/SiO2 Nc (15%) with a larger surface area in W silicate coating can provide increased centers for absorption, photocatalytic reaction, and the contact between sample and bacteria lead to enhance the photocatalytic and antibacterial ability of W silicate coating.
RESUMO
Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/ultraestrutura , Centríolos/ultraestrutura , Cílios/ultraestrutura , Proteínas dos Microtúbulos/ultraestrutura , Proteínas Associadas aos Microtúbulos/ultraestrutura , Canais de Sódio/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centríolos/metabolismo , Cílios/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Edição de Genes , Expressão Gênica , Células HEK293 , Humanos , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Imagem Molecular , Multimerização Proteica , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Canais de Sódio/genética , Canais de Sódio/metabolismoRESUMO
Ceria nanoparticles were synthesized from reaction mixture of cerium nitrate/hexamethylenediamine/water-ethylene glycol. Lamellar, particle-aggregated array, platelet, rice, cube, quasi-sphere shapes of the ceria nanoparticles can be controlled by tuning reaction parameters (reagent concentration, reagent components, pH, and reaction conditions). Studies on shape-dependent catalysis of the bare ceria samples toward CO oxidation indicated that the cube-shaped ceria nanoparticles show better catalytic activity than the nanospheres and the commercial micropowders. As capped by hexamethylenediamine (HEA) molecules, amine-functionalized ceria nanoparticles act as platforms for depositing copper particles to produce efficient Cu/CeO(2) hybrid nanocatalysts for CO conversion. Coupling of the copper clusters with the HEA-capped ceria nanocubes was achieved with the Cu contents up to 15 wt.%. The Cu/CeO(2) nanohybrids show an enhanced catalytic efficiency of low temperature CO conversion. This could be due to high exposure of the reactive {100} facets in the ceria nanocubes and interfacial copper-ceria interactions.