Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Exp Biol ; 226(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272538

RESUMO

Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish. A strong candidate is the mechanosensory lateral line, a hair cell-based sensory system that detects hydrodynamic information from sources such as water currents, predators, prey and surface waves. However, a role for the lateral line in mediating initial inflation of the swim bladder has not been reported. To explore the connection between the lateral line and surfacing, we used a genetic mutant (lhfpl5b-/-) that renders the zebrafish lateral line insensitive to mechanical stimuli. We observed that approximately half of these lateral line mutants over-inflate their swim bladders during initial inflation and become positively buoyant. Thus, we hypothesized that larval zebrafish use their lateral line to moderate interactions with the air-water interface during surfacing to regulate swim bladder inflation. To test the hypothesis that lateral line defects are responsible for swim bladder over-inflation, we showed that exogenous air is required for the hyperinflation phenotype and transgenic rescue of hair cell function restores normal inflation. We also found that chemical ablation of anterior lateral line hair cells in wild-type larvae causes hyperinflation. Furthermore, we show that manipulation of lateral line sensory information results in abnormal inflation. Finally, we report spatial and temporal differences in the surfacing behavior between wild-type and lateral line mutant larvae. In summary, we propose a novel sensory basis for achieving neutral buoyancy where larval zebrafish use their lateral line to sense the air-water interface and regulate initial swim bladder inflation.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Larva/genética , Bexiga Urinária , Sensação
2.
J Neurosci ; 37(26): 6299-6313, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28546313

RESUMO

In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Tempo de Reação/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Tamanho Celular , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/fisiologia , Inibição Neural/fisiologia , Peixe-Zebra/anatomia & histologia
3.
J Undergrad Neurosci Educ ; 17(1): A40-A49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618498

RESUMO

Here we introduce a novel set of laboratory exercises for teaching about hair cell structure and function and dose-response relationships via fluorescence microscopy. Through fluorescent labeling of lateral line hair cells, students assay aminoglycoside block of mechanoelectrical transduction (MET) channels in larval zebrafish. Students acquire and quantify images of hair cells fluorescently labeled with FM 1-43, which enters the hair cell through MET channels. Blocking FM 1-43 uptake with different concentrations of dihydrostreptomycin (DHS) results in dose-dependent reduction in hair-cell fluorescence. This method allows students to generate dose-response curves for the percent fluorescence reduction at different concentrations of DHS, which are then visualized to examine the blocking behavior of DHS using the Hill equation. Finally, students present their findings in lab reports structured as scientific papers. Together these laboratory exercises give students the opportunity to learn about hair cell mechanotransduction, pharmacological block of ion channels, and dose-dependent relationships including the Hill equation, while also exposing students to the zebrafish model organism, fluorescent labeling and microscopy, acquisition and analysis of images, and the presentation of experimental findings. These simple yet comprehensive techniques are appropriate for an undergraduate biology or neuroscience classroom laboratory.

4.
J Physiol ; 595(1): 265-282, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27228964

RESUMO

KEY POINTS: Using high-speed videos time-locked with whole-animal electrical recordings, simultaneous measurement of behavioural kinematics and field potential parameters of C-start startle responses allowed for discrimination between short-latency and long-latency C-starts (SLCs vs. LLCs) in larval zebrafish. Apart from their latencies, SLC kinematics and SLC field potential parameters were intensity independent. Increasing stimulus intensity increased the probability of evoking an SLC and decreased mean SLC latencies while increasing their precision; subtraction of field potential latencies from SLC latencies revealed a fixed time delay between the two measurements that was intensity independent. The latency and the precision in the latency of the SLC field potentials were linearly correlated to the latencies and precision of the first evoked action potentials (spikes) in hair-cell afferent neurons of the lateral line. Together, these findings indicate that first spike latency (FSL) is a fast encoding mechanism that can serve to precisely initiate startle responses when speed is critical for survival. ABSTRACT: Vertebrates rely on fast sensory encoding for rapid and precise initiation of startle responses. In afferent sensory neurons, trains of action potentials (spikes) encode stimulus intensity within the onset time of the first evoked spike (first spike latency; FSL) and the number of evoked spikes. For speed of initiation of startle responses, FSL would be the more advantageous mechanism to encode the intensity of a threat. However, the intensity dependence of FSL and spike number and whether either determines the precision of startle response initiation is not known. Here, we examined short-latency startle responses (SLCs) in larval zebrafish and tested the hypothesis that first spike latencies and their precision (jitter) determine the onset time and precision of SLCs. We evoked startle responses via activation of Channelrhodopsin (ChR2) expressed in ear and lateral line hair cells and acquired high-speed videos of head-fixed larvae while simultaneously recording underlying field potentials. This method allowed for discrimination between primary SLCs and less frequent, long-latency startle responses (LLCs). Quantification of SLC kinematics and field potential parameters revealed that, apart from their latencies, they were intensity independent. We found that increasing stimulus intensity decreased SLC latencies while increasing their precision, which was significantly correlated with corresponding changes in field potential latencies and their precision. Single afferent neuron recordings from the lateral line revealed a similar intensity-dependent decrease in first spike latencies and their jitter, which could account for the intensity-dependent changes in timing and precision of startle response latencies.


Assuntos
Tempo de Reação/fisiologia , Reflexo de Sobressalto/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Feminino , Células Ciliadas Auditivas/fisiologia , Larva , Masculino , Neurônios Aferentes/fisiologia , Rodopsina/genética , Peixe-Zebra
5.
J Neurosci ; 35(50): 16494-503, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674873

RESUMO

The senses of hearing and balance are subject to modulation by efferent signaling, including the release of dopamine (DA). How DA influences the activity of the auditory and vestibular systems and its site of action are not well understood. Here we show that dopaminergic efferent fibers innervate the acousticolateralis epithelium of the zebrafish during development but do not directly form synapses with hair cells. However, a member of the D1-like receptor family, D1b, tightly localizes to ribbon synapses in inner ear and lateral-line hair cells. To assess modulation of hair-cell activity, we reversibly activated or inhibited D1-like receptors (D1Rs) in lateral-line hair cells. In extracellular recordings from hair cells, we observed that D1R agonist SKF-38393 increased microphonic potentials, whereas D1R antagonist SCH-23390 decreased microphonic potentials. Using ratiometric calcium imaging, we found that increased D1R activity resulted in larger calcium transients in hair cells. The increase of intracellular calcium requires Cav1.3a channels, as a Cav1 calcium channel antagonist, isradipine, blocked the increase in calcium transients elicited by the agonist SKF-38393. Collectively, our results suggest that DA is released in a paracrine fashion and acts at ribbon synapses, likely enhancing the activity of presynaptic Cav1.3a channels and thereby increasing neurotransmission. SIGNIFICANCE STATEMENT: The neurotransmitter dopamine acts in a paracrine fashion (diffusion over a short distance) in several tissues and bodily organs, influencing and regulating their activity. The cellular target and mechanism of the action of dopamine in mechanosensory organs, such as the inner ear and lateral-line organ, is not clearly understood. Here we demonstrate that dopamine receptors are present in sensory hair cells at synaptic sites that are required for signaling to the brain. When nearby neurons release dopamine, activation of the dopamine receptors increases the activity of these mechanosensitive cells. The mechanism of dopamine activation requires voltage-gated calcium channels that are also present at hair-cell synapses.


Assuntos
Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Células Ciliadas Auditivas/fisiologia , Peixe-Zebra/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Potenciais Microfônicos da Cóclea/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Sistema da Linha Lateral/inervação , Sistema da Linha Lateral/fisiologia , Fosfolipase D/genética , Fosfolipase D/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Proteínas de Peixe-Zebra
6.
Development ; 138(7): 1309-19, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21350006

RESUMO

Ribbon synapses of the ear, eye and pineal gland contain a unique protein component: Ribeye. Ribeye consists of a novel aggregation domain spliced to the transcription factor CtBP2 and is one of the most abundant proteins in synaptic ribbon bodies. Although the importance of Ribeye for the function and physical integrity of ribbon synapses has been shown, a specific role in synaptogenesis has not been described. Here, we have modulated Ribeye expression in zebrafish hair cells and have examined the role of Ribeye in synapse development. Knockdown of ribeye resulted in fewer stimulus-evoked action potentials from afferent neurons and loss of presynaptic Ca(V)1.3a calcium channel clusters in hair cells. Additionally, afferent innervation of hair cells was reduced in ribeye morphants, and the reduction was correlated with depletion of Ribeye punctae. By contrast, transgenic overexpression of Ribeye resulted in Ca(V)1.3a channels colocalized with ectopic aggregates of Ribeye protein. Overexpression of Ribeye, however, was not sufficient to create ectopic synapses. These findings reveal two distinct functions of Ribeye in ribbon synapse formation--clustering Ca(V)1.3a channels at the presynapse and stabilizing contacts with afferent neurons--and suggest that Ribeye plays an organizing role in synaptogenesis.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Ciliadas Auditivas/metabolismo , Fosfoproteínas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Canais de Cálcio Tipo L/genética , Proteínas de Ligação a DNA/genética , Eletrofisiologia , Imuno-Histoquímica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfoproteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
J Undergrad Neurosci Educ ; 13(1): A52-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565920

RESUMO

Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the "C-bend" due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials.

8.
J Neurosci ; 32(32): 11144-56, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875945

RESUMO

Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesicles and its requirement for acidification of intracellular compartments. Here, we provide the first evidence for a role of Rbc3α in synaptic vesicle acidification and neurotransmission. In this study, we characterized mutant alleles of rbc3α isolated from a large-scale screen for zebrafish with auditory/vestibular defects. We show that Rbc3α is localized to basal regions of hair cells in which synaptic vesicles are present. To determine whether Rbc3α regulates V-ATPase activity, we examined the acidification of synaptic vesicles and localization of the V-ATPase in hair cells. In contrast to wild-type hair cells, we observed that synaptic vesicles had elevated pH, and a cytosolic subunit of the V-ATPase was no longer enriched in synaptic regions of mutant hair cells. As a consequence of defective acidification of synaptic vesicles, afferent neurons in rbc3α mutants had reduced firing rates and reduced accuracy of phase-locked action potentials in response to mechanical stimulation of hair cells. Collectively, our data suggest that Rbc3α modulates synaptic transmission in hair cells by promoting V-ATPase activity in synaptic vesicles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Ciliadas Auditivas/citologia , Bombas de Próton/metabolismo , Vesículas Sinápticas/metabolismo , Estimulação Acústica/efeitos adversos , Potenciais de Ação/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Inibidores Enzimáticos/farmacologia , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva , Sistema da Linha Lateral/metabolismo , Macrolídeos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Confocal , Biologia Molecular , Mutação/genética , Estimulação Física , RNA Mensageiro/metabolismo , Transtornos de Sensação/genética , Vesículas Sinápticas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Gravação em Vídeo , Transtornos da Visão/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36712117

RESUMO

Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish. A strong candidate is the mechanosensory lateral line, a hair cell-based sensory system that detects hydrodynamic information from sources like water currents, predators, prey, and surface waves. However, a role for the lateral line in mediating initial inflation of the swim bladder has not been reported. To explore the connection between the lateral line and surfacing, we utilized a genetic mutant ( lhfpl5b -/- ) that renders the zebrafish lateral line insensitive to mechanical stimuli. We observe that approximately half of these lateral line mutants over-inflate their swim bladders during initial inflation and become positively buoyant. Thus, we hypothesize that larval zebrafish use their lateral line to moderate interactions with the air-water interface during surfacing to regulate swim bladder inflation. To test the hypothesis that lateral line defects are responsible for swim bladder over-inflation, we show exogenous air is required for the hyperinflation phenotype and transgenic rescue of hair cell function restores normal inflation. We also find that chemical ablation of anterior lateral line hair cells in wild type larvae causes hyperinflation. Furthermore, we show that manipulation of lateral line sensory information results in abnormal inflation. Finally, we report spatial and temporal differences in the surfacing behavior between wild type and lateral line mutant larvae. In summary, we propose a novel sensory basis for achieving neutral buoyancy where larval zebrafish use their lateral line to sense the air-water interface and regulate initial swim bladder inflation.

10.
Cell Rep ; 42(4): 112345, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027300

RESUMO

The AAA+ NSF complex is responsible for SNARE complex disassembly both before and after membrane fusion. Loss of NSF function results in pronounced developmental and degenerative defects. In a genetic screen for sensory deficits in zebrafish, we identified a mutation in nsf, I209N, that impairs hearing and balance in a dosage-dependent manner without accompanying defects in motility, myelination, and innervation. In vitro experiments demonstrate that while the I209N NSF protein recognizes SNARE complexes, the effects on disassembly are dependent upon the type of SNARE complex and I209N concentration. Higher levels of I209N protein produce a modest decrease in binary (syntaxin-SNAP-25) SNARE complex disassembly and residual ternary (syntaxin-1A-SNAP-25-synaptobrevin-2) disassembly, whereas at lower concentrations binary disassembly activity is strongly reduced and ternary disassembly activity is absent. Our study suggests that the differential effect on disassembly of SNARE complexes leads to selective effects on NSF-mediated membrane trafficking and auditory/vestibular function.


Assuntos
Fusão de Membrana , Proteínas SNARE , Animais , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Proteínas Sensíveis a N-Etilmaleimida/metabolismo , Mutação/genética , Controle de Qualidade
11.
J Neurosci ; 31(5): 1614-23, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289170

RESUMO

Many auditory, vestibular, and lateral-line afferent neurons display spontaneous action potentials. This spontaneous spiking is thought to result from hair-cell glutamate release in the absence of stimuli. Spontaneous release at hair-cell resting potentials presumably results from Ca(V)1.3 L-type calcium channel activity. Here, using intact zebrafish larvae, we recorded robust spontaneous spiking from lateral-line afferent neurons in the absence of external stimuli. Consistent with the above assumptions, spiking was absent in mutants that lacked either Vesicular glutamate transporter 3 (Vglut3) or Ca(V)1.3. We then tested the hypothesis that spontaneous spiking resulted from sustained Ca(V)1.3 activity due to depolarizing currents that are active at rest. Mechanotransduction currents (I(MET)) provide a depolarizing influence to the resting potential. However, following block of I(MET), spontaneous spiking persisted and was characterized by longer interspike intervals and increased periods of inactivity. These results suggest that an additional depolarizing influence maintains the resting potential within the activation range of Ca(V)1.3. To test whether the hyperpolarization-activated cation current, I(h) participates in setting the resting potential, we applied I(h) antagonists. Both ZD7288 and DK-AH 269 reduced spontaneous activity. Finally, concomitant block of I(MET) and I(h) essentially abolished spontaneous activity, ostensibly by hyperpolarization outside of the activation range for Ca(V)1.3. Together, our data support a mechanism for spontaneous spiking that results from Ca(2+)-dependent neurotransmitter release at hair-cell resting potentials that are maintained within the activation range of Ca(V)1.3 channels through active I(MET) and I(h).


Assuntos
Canais de Cálcio Tipo L/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Sistema da Linha Lateral/fisiologia , Mecanotransdução Celular/fisiologia , Potenciais da Membrana/fisiologia , Neurônios Aferentes/fisiologia , Canais de Potássio/fisiologia , Potenciais de Ação/fisiologia , Animais , Benzazepinas/farmacologia , Estimulação Elétrica/métodos , Eletrofisiologia , Células Ciliadas Auditivas/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Sistema da Linha Lateral/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Estimulação Física/métodos , Pirimidinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Vesiculares de Transporte de Glutamato/deficiência , Proteínas Vesiculares de Transporte de Glutamato/genética , Peixe-Zebra
12.
PLoS Genet ; 5(5): e1000480, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424431

RESUMO

To faithfully encode mechanosensory information, auditory/vestibular hair cells utilize graded synaptic vesicle (SV) release at specialized ribbon synapses. The molecular basis of SV release and consequent recycling of membrane in hair cells has not been fully explored. Here, we report that comet, a gene identified in an ENU mutagenesis screen for zebrafish larvae with vestibular defects, encodes the lipid phosphatase Synaptojanin 1 (Synj1). Examination of mutant synj1 hair cells revealed basal blebbing near ribbons that was dependent on Cav1.3 calcium channel activity but not mechanotransduction. Synaptojanin has been previously implicated in SV recycling; therefore, we tested synaptic transmission at hair-cell synapses. Recordings of post-synaptic activity in synj1 mutants showed relatively normal spike rates when hair cells were mechanically stimulated for a short period of time at 20 Hz. In contrast, a sharp decline in the rate of firing occurred during prolonged stimulation at 20 Hz or stimulation at a higher frequency of 60 Hz. The decline in spike rate suggested that fewer vesicles were available for release. Consistent with this result, we observed that stimulated mutant hair cells had decreased numbers of tethered and reserve-pool vesicles in comparison to wild-type hair cells. Furthermore, stimulation at 60 Hz impaired phase locking of the postsynaptic activity to the mechanical stimulus. Following prolonged stimulation at 60 Hz, we also found that mutant synj1 hair cells displayed a striking delay in the recovery of spontaneous activity. Collectively, the data suggest that Synj1 is critical for retrieval of membrane in order to maintain the quantity, timing of fusion, and spontaneous release properties of SVs at hair-cell ribbon synapses.


Assuntos
Células Ciliadas Auditivas/fisiologia , Células Ciliadas Vestibulares/fisiologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia , Processamento Alternativo , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Potenciais Evocados , Células Ciliadas Auditivas/patologia , Células Ciliadas Vestibulares/patologia , Microscopia Eletrônica de Transmissão , Mutação , Fenótipo , Estimulação Física , Vesículas Sinápticas/patologia , Vesículas Sinápticas/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia
13.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106556

RESUMO

GABAA receptors mediate rapid responses to the neurotransmitter gamma-aminobutyric acid and are robust regulators of the brain and spinal cord neural networks that control locomotor behaviors, such as walking and swimming. In developing zebrafish, gross pharmacological blockade of these receptors causes hyperactive swimming, which is also a feature of many zebrafish epilepsy models. Although GABAA receptors are important to control locomotor behavior, the large number of subunits and homeostatic compensatory mechanisms have challenged efforts to determine subunit-selective roles. To address this issue, we mutated each of the 8 zebrafish GABAA α subunit genes individually and in pairs using a CRISPR-Cas9 somatic inactivation approach and, then, we examined the swimming behavior of the mutants at 2 developmental stages, 48 and 96 h postfertilization. We found that disrupting the expression of specific pairs of subunits resulted in different abnormalities in swimming behavior at 48 h postfertilization. Mutation of α4 and α5 selectively resulted in longer duration swimming episodes, mutations in α3 and α4 selectively caused excess, large-amplitude body flexions (C-bends), and mutation of α3 and α5 resulted in increases in both of these measures of hyperactivity. At 96 h postfertilization, hyperactive phenotypes were nearly absent, suggesting that homeostatic compensation was able to overcome the disruption of even multiple subunits. Taken together, our results identify subunit-selective roles for GABAA α3, α4, and α5 in regulating locomotion. Given that these subunits exhibit spatially restricted expression patterns, these results provide a foundation to identify neurons and GABAergic networks that control discrete aspects of locomotor behavior.


Assuntos
Receptores de GABA-A , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Locomoção/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/fisiologia , Medula Espinal/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/fisiologia
14.
Methods Mol Biol ; 2191: 201-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865747

RESUMO

Zebrafish are an excellent model organism to study many aspects of vertebrate sensory encoding and behavior. Their escape responses begin with a C-shaped body bend followed by several swimming bouts away from the potentially threatening stimulus. This highly stereotyped motor behavior provides a model for studying startle reflexes and the neural circuitry underlying multisensory encoding and locomotion. Channelrhodopsin (ChR2) can be expressed in the lateral line and ear hair cells of zebrafish and can be excited in vivo to elicit these rapid forms of escape. Here we review our methods for studying transgenic ChR2-expressing zebrafish larvae, including screening for positive expression of ChR2 and recording field potentials and high-speed videos of optically evoked escape responses. We also highlight important features of the acquired data and provide a brief review of other zebrafish research that utilizes or has the potential to benefit from ChR2 and optogenetics.


Assuntos
Channelrhodopsins/genética , Potenciais Evocados/genética , Neurônios/metabolismo , Optogenética/métodos , Animais , Animais Geneticamente Modificados/genética , Channelrhodopsins/fisiologia , Potenciais Evocados/fisiologia , Células Ciliadas Auditivas/metabolismo , Larva/fisiologia , Locomoção/genética , Locomoção/fisiologia , Neurônios/patologia , Reflexo de Sobressalto/fisiologia , Natação/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
15.
J Neurosci ; 28(9): 2110-8, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305245

RESUMO

Hair cells detect sound and movement and transmit this information via specialized ribbon synapses. Here we report that asteroid, a gene identified in an ethylnitrosourea mutagenesis screen of zebrafish larvae for auditory/vestibular mutants, encodes vesicular glutamate transporter 3 (Vglut3). A splice site mutation in exon 2 of vglut3 results in a severe truncation of the predicted protein product and morpholinos directed against the vglut3 ATG start site or the affected splice junction replicate the asteroid phenotype. In situ hybridization shows that vglut3 is exclusively expressed in hair cells of the ear and lateral line organ. A second transporter gene, vglut1, is also expressed in zebrafish hair cells, but the level of vglut1 mRNA is not increased in the absence of Vglut3. Antibodies against Vglut3 label the basal end of hair cells and labeling is not present in asteroid/vglut3 mutants. Based on the localization of Vglut3 in hair cells, we suspected that the lack of vestibulo-ocular and acoustic startle reflexes in asteroid/vglut3 mutants was attributable to a defect in synaptic transmission in hair cells. In support of this notion, action currents in postsynaptic acousticolateralis neurons are absent in asteroid/vglut3 mutants. At the ultrastructural level, mutant asteroid/vglut3 hair cells show a decrease in the number of ribbon-associated synaptic vesicles, indicating a role for Vglut3 in synaptic vesicle biogenesis and/or tethering to the ribbon body. Lack of postsynaptic action currents in the mutants suggests that the remaining hair-cell synaptic vesicles contain insufficient levels of glutamate for generation of action potentials in first-order neurons.


Assuntos
Células Ciliadas Auditivas/fisiologia , Transmissão Sináptica/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Estimulação Acústica/métodos , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Larva , Microscopia Eletrônica de Transmissão/métodos , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Estimulação Física/métodos , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Reflexo Vestíbulo-Ocular/fisiologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Proteínas Vesiculares de Transporte de Glutamato/genética , Peixe-Zebra
16.
Sci Rep ; 8(1): 14851, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291277

RESUMO

Without stimuli, hair cells spontaneously release neurotransmitter leading to spontaneous generation of action potentials (spikes) in innervating afferent neurons. We analyzed spontaneous spike patterns recorded from the lateral line of zebrafish and found that distributions of interspike intervals (ISIs) either have an exponential shape or an "L" shape that is characterized by a sharp decay but wide tail. ISI data were fitted to renewal-process models that accounted for the neuron refractory periods and hair-cell synaptic release. Modeling the timing of synaptic release using a mixture of two exponential distributions yielded the best fit for our ISI data. Additionally, lateral line ISIs displayed positive serial correlation and appeared to exhibit switching between faster and slower modes of spike generation. This pattern contrasts with previous findings from the auditory system where ISIs tended to have negative serial correlation due to synaptic depletion. We propose that afferent neuron innervation with multiple and heterogenous hair-cells synapses, each influenced by changes in calcium domains, can serve as a mechanism for the random switching behavior. Overall, our analyses provide evidence of how physiological similarities and differences between synapses and innervation patterns in the auditory, vestibular, and lateral line systems can lead to variations in spontaneous activity.


Assuntos
Potenciais de Ação , Sistema da Linha Lateral/inervação , Neurônios Aferentes/fisiologia , Peixe-Zebra/fisiologia , Animais , Sistema da Linha Lateral/citologia , Sistema da Linha Lateral/fisiologia , Modelos Neurológicos , Neurônios Aferentes/citologia , Sinapses/fisiologia
17.
J Gen Physiol ; 128(2): 231-46, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880266

RESUMO

Current magnitude in Kv2.1 potassium channels is modulated by external [K+]. In contrast to behavior expected from the change in electrochemical driving force, outward current through Kv2.1 channels becomes larger when extracellular [K+] is increased within the physiological range. The mechanism that underlies this unusual property involves the opening of Kv2.1 channels into one of two different outer vestibule conformations, which are defined by their sensitivity to TEA. Channels that open into a TEA-sensitive conformation generate larger macroscopic currents, whereas channels that open into a TEA-insensitive conformation generate smaller macroscopic currents. At higher [K+], more channels open into the TEA-sensitive conformation. In this manuscript, we examined the mechanism by which the conformational change produced a change in current magnitude. We started by testing the simplest hypothesis: that each pharmacologically defined channel conformation produces a different single channel conductance, one smaller and one larger, and that the [K+]-dependent change in current magnitude reflects the [K+]-dependent change in the percentage of channels that open into each of the two conformations. Using single channel and macroscopic recordings, as well as hidden Markov modeling, we were able to quantitatively account for [K+]-dependent regulation of macroscopic current with this model. Combined with previously published work, these results support a model whereby an outer vestibule lysine interferes with K+ flux through the channel, and that the [K+]-dependent change in orientation of this lysine alters single channel conductance by changing the level of this interference. Moreover, these results provide an experimental example of single channel conductance being modulated at the outer end of the conduction pathway by a mechanism that involves channel activation into open states with different outer vestibule conformations.


Assuntos
Ativação do Canal Iônico/fisiologia , Canais de Potássio Shab/fisiologia , Algoritmos , Substituição de Aminoácidos/genética , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/genética , Cadeias de Markov , Potenciais da Membrana/efeitos dos fármacos , Mutação/genética , Técnicas de Patch-Clamp , Potássio/metabolismo , Potássio/farmacologia , Conformação Proteica/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Canais de Potássio Shab/química , Canais de Potássio Shab/genética , Transfecção
18.
Front Cell Neurosci ; 10: 83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065807

RESUMO

Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

19.
IEEE Trans Nanobioscience ; 4(1): 21-33, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15816169

RESUMO

Potassium channels are integral membrane proteins that selectively transport K+ across the cell membrane. They are present in all mammalian cells and have a wide variety of roles in both excitable and nonexcitable cells. The phenotypic diversity required to accomplish their various roles is created by differences in conductance, the timecourse and mechanisms of different gating events, and the interaction of channels with a variety of accessory proteins. Through the integration of biophysical, molecular, structural, and theoretical studies, significant progress has been made toward understanding the structural basis of K+ channel function, and diseases associated with K+ channel dysfunction.


Assuntos
Ativação do Canal Iônico/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Modelos Químicos , Canais de Potássio/química , Canais de Potássio/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Humanos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
20.
BMC Neurosci ; 4: 15, 2003 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-12839626

RESUMO

BACKGROUND: Many molecular studies of ion channel function rely on the ability to obtain high quality voltage clamp recordings using the patch clamp technique. For a variety of channel types studied in mammalian cell heterologous expression systems, the lack of experimenter control over expression levels severely hinders the ability to obtain a high percentage of cells with an expression level suitable for high quality recordings. Moreover, it has been nearly impossible to obtain expression levels in mammalian cells well suited for single channel recordings. We describe here the use of an inducible promoter system in a stably transfected mammalian cell line that produces nearly 100% success in obtaining ion channel expression levels suitable for either whole cell or single ion channel studies. RESULTS: We used a tetracycline-regulated expression system to control K+ channel expression in a CHO (Chinese hamster ovary) cell line. Current magnitudes within a reasonably narrow range could be easily and reliably obtained for either macroscopic or single channel recordings. Macroscopic currents of 1-2 nA could be obtained in nearly 100% of cells tested. The desired expression level could be obtained within just 2 to 3 hours, and remained stable at room temperature. Very low expression levels of transfected channels could also be obtained, which resulted in a >70% success rate in the ability to record single channel currents from a patch. Moreover, at these low expression levels, it appeared that endogenous channels produced little or no contamination. CONCLUSION: This approach to controlling ion channel expression is relatively simple, greatly enhances the speed and efficiency with which high quality macroscopic current data can be collected, and makes it possible to easily and reliably record single channel currents in a mammalian cell heterologous expression system. Whereas we demonstrate the ability of this system to control expression levels of voltage-gated K+ channels, it should be applicable to all other channel types that express well in mammalian expression systems.


Assuntos
Regulação da Expressão Gênica , Canais Iônicos/biossíntese , Canais Iônicos/genética , Técnicas de Patch-Clamp/métodos , Animais , Células CHO , Linhagem Celular , Cricetinae , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/biossíntese , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Sensibilidade e Especificidade , Tetraciclina/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa