Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2218247120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877851

RESUMO

Needle-and-syringe-based delivery has been the commercial standard for vaccine administration to date. With worsening medical personnel availability, increasing biohazard waste production, and the possibility of cross-contamination, we explore the possibility of biolistic delivery as an alternate skin-based delivery route. Delicate formulations like liposomes are inherently unsuitable for this delivery model as they are fragile biomaterials incapable of withstanding shear stress and are exceedingly difficult to formulate as a lyophilized powder for room temperature storage. Here we have developed a approach to deliver liposomes into the skin biolistically-by encapsulating them in a nano-sized shell made of Zeolitic Imidazolate Framework-8 (ZIF-8). When encapsulated within a crystalline and rigid coating, the liposomes are not only protected from thermal stress, but also shear stress. This protection from stressors is crucial, especially for formulations with cargo encapsulated inside the lumen of the liposomes. Moreover, the coating provides the liposomes with a solid exterior that allows the particles to penetrate the skin effectively. In this work, we explored the mechanical protection ZIF-8 provides to liposomes as a preliminary investigation for using biolistic delivery as an alternative to syringe-and-needle-based delivery of vaccines. We demonstrated that liposomes with a variety of surface charges could be coated with ZIF-8 using the right conditions, and this coating can be just as easily removed-without causing any damage to the protected material. The protective coating prevented the liposomes from leaking cargo and helped in their effective penetration when delivered into the agarose tissue model and porcine skin tissue.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Animais , Suínos , Lipossomos , Biolística , Materiais Biocompatíveis , Contaminação de Medicamentos
2.
J Mater Chem B ; 12(13): 3273-3281, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38469725

RESUMO

Superoxide, an anionic dioxygen molecule, plays a crucial role in redox regulation within the body but is implicated in various pathological conditions when produced excessively. Efforts to develop superoxide detection strategies have led to the exploration of organic-based contrast agents for magnetic resonance imaging (MRI). This study compares the effectiveness of two such agents, nTMV-TEMPO and kTMV-TEMPO, for detecting superoxide in a mouse liver model with lipopolysaccharide (LPS)-induced inflammation. The study demonstrates that kTMV-TEMPO, with a strategically positioned lysine residue for TEMPO attachment, outperforms nTMV-TEMPO as an MRI contrast agent. The enhanced sensitivity of kTMV-TEMPO is attributed to its more exposed TEMPO attachment site, facilitating stronger interactions with water protons and superoxide radicals. EPR kinetics experiments confirm kTMV-TEMPO's faster oxidation and reduction rates, making it a promising sensor for superoxide in inflamed liver tissue. In vivo experiments using healthy and LPS-induced inflamed mice reveal that reduced kTMV-TEMPO remains MRI-inactive in healthy mice but becomes MRI-active in inflamed livers. The contrast enhancement in inflamed livers is substantial, validating the potential of kTMV-TEMPO for detecting superoxide in vivo. This research underscores the importance of optimizing contrast agents for in vivo imaging applications. The enhanced sensitivity and biocompatibility of kTMV-TEMPO make it a promising candidate for further studies in the realm of medical imaging, particularly in the context of monitoring oxidative stress-related diseases.


Assuntos
Superóxidos , Vírus do Mosaico do Tabaco , Camundongos , Animais , Meios de Contraste/química , Lipopolissacarídeos , Imageamento por Ressonância Magnética/métodos , Fígado
3.
Chem Sci ; 15(8): 2731-2744, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404371

RESUMO

Vaccines have saved countless lives by preventing and even irradicating infectious diseases. Commonly used subunit vaccines comprising one or multiple recombinant proteins isolated from a pathogen demonstrate a better safety profile than live or attenuated vaccines. However, the immunogenicity of these vaccines is weak, and therefore, subunit vaccines require a series of doses to achieve sufficient immunity against the pathogen. Here, we show that the biomimetic mineralization of the inert model antigen, ovalbumin (OVA), in zeolitic imidazolate framework-8 (ZIF-8) significantly improves the humoral immune response over three bolus doses of OVA (OVA 3×). Encapsulation of OVA in ZIF-8 (OVA@ZIF) demonstrated higher serum antibody titers against OVA than OVA 3×. OVA@ZIF vaccinated mice displayed higher populations of germinal center (GC) B cells and IgG1+ GC B cells as opposed to OVA 3×, indicative of class-switching recombination. We show that the mechanism of this phenomenon is at least partly owed to the metalloimmunological effects of the zinc metal as well as the sustained release of OVA from the ZIF-8 composite. The system acts as an antigen reservoir for antigen-presenting cells to traffic into the draining lymph node, enhancing the humoral response. Lastly, our model system OVA@ZIF is produced quickly at the gram scale in a laboratory setting, sufficient for up to 20 000 vaccine doses.

4.
Chem Sci ; 14(21): 5774-5782, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37265713

RESUMO

Zeolitic imidazolate framework-8 (ZIF-8) is becoming popular in research for its potential in antigen protection and for providing a thermally stable, slow-release platform. While papers applying this material for immunological applications are aplenty in the literature, studies that explore the biosafety of ZIF-8 in mammals-especially when administered intranasally-are not well represented. We checked the body clearance of uncoated and ZIF-8-coated liposomes and observed that the release slowed as ZIF-8 is easily degraded by mucosal fluid in the nasal cavity. We delivered varying doses of ZIF-8, checked its short- and long-term effects on diagnostic proteins found in blood serum, and found no noticeable differences from the saline control group. We also studied their lung diffusing capacity and tissue morphology; neither showed significant changes in morphology or function.

5.
J Mater Chem B ; 11(20): 4445-4452, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37144595

RESUMO

Virus-like particles (VLPs) are engineered nanoparticles that mimic the properties of viruses-like high tolerance to heat and proteases-but lack a viral genome, making them non-infectious. They are easily modified chemically and genetically, making them useful in drug delivery, enhancing vaccine efficacy, gene delivery, and cancer immunotherapy. One such VLP is Qß, which has an affinity towards an RNA hairpin structure found in its viral RNA that drives the self-assembly of the capsid. It is possible to usurp the native way infectious Qß self-assembles to encapsidate its RNA to place enzymes inside the VLP's lumen as a protease-resistant cage. Further, using RNA templates that mimic the natural self-assembly of the native capsid, fluorescent proteins (FPs) have been placed inside VLPs in a "one pot" expression system. Autofluorescence in tissues can lead to misinterpretation of results and unreliable science, so we created a single-pot expression system that uses the fluorescent protein smURFP, which avoids autofluorescence and has spectral properties compatible with standard commercial filter sets on confocal microscopes. In this work, we were able to simplify the existing "one-pot" expression system while creating high-yielding fluorescent VLP nanoparticles that could easily be imaged inside lung epithelial tissue.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , RNA Viral
6.
J Mater Chem B ; 11(30): 7126-7133, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37401235

RESUMO

Intracellular targeting is essential for the efficient delivery of drugs and nanotherapeutics. Transporting nanomaterials into cells' cytoplasm for therapeutic purposes can be challenging due to the endosomal trap and lysosomal degradation of cargo. To overcome this issue, we utilized chemical synthesis to design a functional carrier that can escape the endosome and deliver biological materials into the cytoplasm. We synthesized a thiol-sensitive maleimide linker that connects the well-known mitochondria targeting lipophilic triphenylphosphonium cation (TPP) to the surface of a proteinaceous nanoparticle based on the engineered virus-like particle (VLP) Qß. TPP facilitates endosomal escape by its lipophilic and cationic nature, which disrupts the endosomal membrane. Once in the cytosol, glutathione reacts with the thiol-sensitive maleimide linkers, severs the TPP from the nanoparticle, halting its trafficking to the mitochondria, and marooning it in the cytosol. We successfully demonstrated cytosolic delivery of a VLP loaded with Green Fluorescent Protein (GFP) in vitro and small-ultrared fluorescent protein (smURFP) in vivo, where evenly distributed fluorescence is observed in A549 human lung adenocarcinoma cells and the epithelial cells of BALB/c mice lungs. As a proof of concept, we encapsulated luciferase-targeted siRNA (siLuc) inside the VLP decorated with the maleimide-TPP (M-TPP) linker. We observed enhanced luminescence silencing in luciferase-expressing HeLa cells using our sheddable TPP linker compared to control VLPs.


Assuntos
Endossomos , Compostos de Sulfidrila , Camundongos , Animais , Humanos , Células HeLa , Endossomos/metabolismo , Luciferases/metabolismo , Maleimidas , Compostos de Sulfidrila/metabolismo
7.
Virology ; 577: 105-123, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343470

RESUMO

Viruses are some of nature's most ubiquitous self-assembled molecular containers. Evolutionary pressures have created some incredibly robust, thermally, and enzymatically resistant carriers to transport delicate genetic information safely. Virus-like particles (VLPs) are human-engineered non-infectious systems that inherit the parent virus' ability to self-assemble under controlled conditions while being non-infectious. VLPs and plant-based viral nanoparticles are becoming increasingly popular in medicine as their self-assembly properties are exploitable for applications ranging from diagnostic tools to targeted drug delivery. Understanding the basic structure and principles underlying the assembly of higher-order structures has allowed researchers to disassemble (rip it), reassemble (stitch it), and functionalize (click it) these systems on demand. This review focuses on the current toolbox of strategies developed to manipulate these systems by ripping, stitching, and clicking to create new technologies in the biomedical space.

8.
Chem Sci ; 13(46): 13803-13814, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544734

RESUMO

The efficacy and specificity of protein, DNA, and RNA-based drugs make them popular in the clinic; however, these drugs are often delivered via injection, requiring skilled medical personnel, and producing biohazardous waste. Here, we report an approach that allows for their controlled delivery, affording either a burst or slow release without altering the formulation. We show that when encapsulated within zeolitic-imidazolate framework eight (ZIF-8), the biomolecules are stable in powder formulations and can be inoculated with a low-cost, gas-powered "MOF-Jet" into living animal and plant tissues. Additionally, their release profiles can be modulated through judicious selection of the carrier gas used in the MOF-Jet. Our in vitro and in vivo studies reveal that when CO2 is used, it creates a transient and weakly acidic local environment that causes a near-instantaneous release of the biomolecules through an immediate dissolution of ZIF-8. Conversely, when air is used, ZIF-8 biodegrades slowly, releasing the biomolecules over a week. This is the first example of controlled-biolistic delivery of biomolecules using ZIF-8, which provides a powerful tool for fundamental and applied science research.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa