RESUMO
Tunable ultrashort pulses in the ultraviolet spectral region are in great demand for a wide range of applications, including spectroscopy and pump-probe experiments. While laser sources capable of producing such pulses exist, they are typically very complex. Notably, resonant dispersive-wave (RDW) emission has emerged as a simple technique for generating such pulses. However, the required pulse energy used to drive the RDW emission, so far, is mostly at the microjoule level, requiring complicated and expensive pump sources. Here, we present our work on lowering the pump energy threshold for generating tuneable deep ultraviolet pulses to the level of tens of nanojoules. We fabricated a record small-core antiresonant fiber with a hollow-core diameter of just 6 µm. When filled with argon, the small mode area enables higher-order soliton propagation and deep ultraviolet (220 to 270 nm) RDW emission from 36 fs pump pulses at 515 nm with the lowest pump energy reported to date (tens of nanojoules). This approach will allow the use of low-cost and compact laser oscillators to drive nonlinear optics in gas-filled fibers for the first time to our knowledge.
RESUMO
We experimentally and numerically investigate flat supercontinuum generation in gas-filled anti-resonant guiding hollow-core photonic crystal fiber. By comparing results obtained with either argon or nitrogen we determine the role of the rotational Raman response in the supercontinuum formation. When using argon, a supercontinuum extending from 350 nm to 2 µm is generated through modulational instability. Although argon and nitrogen exhibit similar Kerr nonlinearity and dispersion, we find that the energy density of the continuum in the normal dispersion region is significantly lower when using nitrogen. Using numerical simulations, we find that due to the closely spaced rotational lines in nitrogen, gain suppression in the fundamental mode causes part of the pump pulse to be coupled into higher-order modes which reduces the energy transfer to wavelengths shorter than the pump.
RESUMO
We report the flexible on-target delivery of 800 nm wavelength, 5 GW peak power, 40 fs duration laser pulses through an evacuated and tightly coiled 10 m long hollow-core nested anti-resonant fiber by positively chirping the input pulses to compensate for the anomalous dispersion of the fiber. Near-transform-limited output pulses with high beam quality and a guided peak intensity of 3 PW/cm2 were achieved by suppressing plasma effects in the residual gas by pre-pumping the fiber with laser pulses after evacuation. This appears to cause a long-term removal of molecules from the fiber core. Identifying the fluence at the fiber core-wall interface as the damage origin, we scaled the coupled energy to 2.1 mJ using a short piece of larger-core fiber to obtain 20 GW at the fiber output. This scheme can pave the way towards the integration of anti-resonant fibers in mJ-level nonlinear optical experiments and laser-source development.
RESUMO
Deep ultraviolet (DUV) laser pulses with tuneable wavelength and very short duration are a key enabling technology for next-generation technology and ultrafast science. Their generation has been the subject of extensive experimental effort, but no technique demonstrated thus far has been able to meet all requirements in one light source. Here we demonstrate a bright, efficient, and compact source of tuneable DUV ultrafast laser pulses based on resonant dispersive wave emission in hollow capillary fiber. In a total footprint of only 120cm×75cm, including the ytterbium-based drive laser, we generate pulses between 208nm and 363nm at 50kHz repetition rate with a total efficiency of up to 3.6%. Down-scaling of the DUV generation reduces the required energy sufficiently to enable the generation of two-color few-femtosecond DUV pulses.
RESUMO
We investigate soliton self-compression and photoionization effects in an argon-filled antiresonant hollow-core photonic crystal fiber pumped with a commercial Yb:KGW laser. Before the onset of photoionization, we demonstrate self-compression of our 220 fs pump laser to 13 fs in a single and compact stage. By using the plasma driven soliton self-frequency blueshift, we also demonstrate a tunable source from 1030 to â¼700 nm. We fully characterize the compressed pulses using sum-frequency generation time-domain ptychography, experimentally revealing the full time-frequency plasma-soliton dynamics in hollow-core fiber for the first time.
RESUMO
We experimentally demonstrate the efficient generation of circularly polarized pulses tunable from the vacuum to deep ultraviolet (160-380 nm) through resonant dispersive wave emission from optical solitons in a gas-filled hollow capillary fiber. In the deep ultraviolet, we measure up to 13 µJ of pulse energy, and from numerical simulations, we estimate the shortest output pulse duration to be 8.5 fs. We also experimentally verify that simply scaling the pulse energy by 3/2 between linearly and circularly polarized pumping closely reproduces the soliton and dispersive wave dynamics. Based on previous results with linearly polarized self-compression and resonant dispersive wave emission, we expect our technique to be extended to produce circularly polarized few-fs pulses further into the vacuum ultraviolet, and few to sub-fs circularly polarized pulses in the near infrared.
RESUMO
Resonant dispersive wave (RDW) emission in gas-filled hollow waveguides is a powerful technique for the generation of bright few-femtosecond laser pulses from the vacuum ultraviolet to the near infrared. Here, we investigate deep-ultraviolet RDW emission in a hollow capillary fiber filled with a longitudinal gas pressure gradient. We obtain broadly similar emission to the constant-pressure case by applying a surprisingly simple scaling rule for the gas pressure and study the energy-dependent dispersive wave spectrum in detail using simulations. We further find that in addition to enabling dispersion-free delivery to experimental targets, a decreasing gradient also reduces the pulse stretching within the waveguide itself, and that transform-limited pulses with 3 fs duration can be generated by using short waveguides. Our results illuminate the fundamental dynamics underlying this frequency conversion technique and will aid in fully exploiting it for applications in ultrafast science and beyond.
RESUMO
We demonstrate an efficient scheme for the generation of broadband, high-energy, circularly polarized femtosecond laser pulses in the deep ultraviolet through seeded degenerate four-wave mixing in stretched gas-filled hollow capillary fibers. Pumping and seeding with circularly polarized 35 fs pulses centered at 400 nm and 800 nm, respectively, we generate idler pulses centered at 266 nm with 27 µJ of energy and over 95% spectrally averaged ellipticity. Even higher idler energies and broad spectra (27 nm bandwidth) can be obtained at the cost of reduced ellipticity. Our system can be scaled in average power and used in different spectral regions, including the vacuum ultraviolet.
RESUMO
We demonstrate high-energy resonant dispersive-wave emission in the deep ultraviolet (218 to 375 nm) from optical solitons in short (15 to 34 cm) hollow capillary fibers. This down-scaling in length compared to previous results in capillaries is achieved by using small core diameters (100 and 150 µm) and pumping with 6.3 fs pulses at 800 nm. We generate pulses with energies of 4 to 6 µJ across the deep ultraviolet in a 100 µm capillary and up to 11 µJ in a 150 µm capillary. From comparisons to simulations we estimate the ultraviolet pulse to be 2 to 2.5 fs in duration. We also numerically study the influence of pump duration on the bandwidth of the dispersive wave.
RESUMO
We report on a highly efficient experimental scheme for the generation of deep-ultraviolet (UV) ultrashort light pulses using four-wave mixing in gas-filled kagomé-style photonic crystal fiber. By pumping with ultrashort, few microjoule pulses centered at 400 nm, we generate an idler pulse at 266 nm and amplify a seeded signal at 800 nm. We achieve remarkably high pump-to-idler energy conversion efficiencies of up to 38%. Although the pump and seed pulse durations are â¼100 fs, the generated UV spectral bandwidths support sub-15 fs pulses. These can be further extended to support few-cycle pulses. Four-wave mixing in gas-filled hollow-core fibers can be scaled to high average powers and different spectral regions such as the vacuum UV (100-200 nm).
RESUMO
Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterize tuneable 3 fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.
RESUMO
We report generation of an ultrafast supercontinuum extending into the mid- infrared in gas-filled single-ring hollow-core photonic crystal fiber (SR-PCF) pumped by 1.7 µm light from an optical parametric amplifier. The simple fiber structure offers shallow dispersion and flat transmission in the near and mid-infrared, enabling the generation of broadband spectra extending from 270 nm to 3.1 µm, with a total energy of a few µJ. In addition, we demonstrate the emission of ultraviolet dispersive waves whose frequency can be tuned simply by adjusting the pump wavelength. SR-PCF thus constitutes an effective means of compressing and delivering tunable ultrafast pulses in the near and mid-infrared spectral regions.
RESUMO
We report the generation of high harmonics in a gas jet pumped by pulses self-compressed in a He-filled hollow-core photonic crystal fiber through the soliton effect. The gas jet is placed directly at the fiber output. As the energy increases, the ionization-induced soliton blueshift is transferred to the high harmonics, leading to emission bands that are continuously tunable from 17 to 45 eV.
RESUMO
A more than 1.5 octave-spanning mid-infrared supercontinuum (1.2 to 3.6 µm) is generated by pumping a As2S3-silica "double-nanospike" waveguide via a femtosecond Cr:ZnS laser at 2.35 µm. The combination of the optimized group velocity dispersion and extremely high nonlinearity provided by the As2S3-silica hybrid waveguide enables a ~100 pJ level pump pulse energy threshold for octave-spanning spectral broadening at a repetition rate of 90 MHz. Numerical simulations show that the generated supercontinuum is highly coherent over the entire spanning wavelength range. The results are important for realization of a high repetition rate octave-spanning frequency comb in the mid-infrared spectral region.
RESUMO
Photonic crystal fibers (PCFs) made from ZBLAN glass are of great interest for generating broadband supercontinua extending into the ultraviolet and mid-infrared regions. Precise sub-micrometer structuring makes it possible to adjust the modal dispersion over a wide range, making the generation of new frequencies more efficient. Here we report a novel ZBLAN PCF with six cores, each containing a central nanobore of a diameter â¼330 nm. Each nanobore core supports several guided modes, and the presence of the nanobore significantly modifies the dispersion, strongly influencing the dynamics and the extent of supercontinuum generation. Spectral broadening is observed when a single core is pumped in the fundamental and first higher order core modes with 200 fs long pulses at a wavelength of 1042 nm. Frequency-resolved optical gating is used to characterize the output pulses when pumping in the lowest order mode. The results are verified by numerical simulations.
RESUMO
A double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 µm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide. The output nanospike is introduced to reduce the output beam divergence and the strong endface Fresnel reflection. The insertion loss of the waveguide is measured to be â¼2 dB at 1550 nm in the case of free-space in-coupling, which is â¼7 dB lower than the previously reported single-nanospike waveguide. By pumping a 3-mm-long waveguide at 1550 nm using a 60-fs fiber laser, an octave-spanning supercontinuum (from 0.8 to beyond 2.5 µm) is generated at 38 pJ input energy.
RESUMO
High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.
RESUMO
An efficient and tunable 176-550 nm source based on the emission of resonant dispersive radiation from ultrafast solitons at 800 nm is demonstrated in a gas-filled hollow-core photonic crystal fiber (PCF). By careful optimization and appropriate choice of gas, informed by detailed numerical simulations, we show that bright, high quality, localized bands of UV light (relative widths of a few percent) can be generated at all wavelengths across this range. Pulse energies of more than 75 nJ in the deep-UV, with relative bandwidths of ~3%, are generated from pump pulses of a few µJ. Excellent agreement is obtained between numerical and experimental results. The effects of positive and negative axial pressure gradients are also experimentally studied, and the coherence of the deep-UV dispersive wave radiation numerically investigated.
Assuntos
Gases/química , Iluminação/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta , VácuoRESUMO
We study theoretically the propagation of relatively long pulses with ionizing intensities in a hollow-core photonic crystal fiber filled with a Raman-inactive noble gas. Because of photoionization, an extremely asymmetric self-phase modulation and a new kind of "universal" plasma-induced modulational instability appear in both normal and anomalous dispersion regions. We also show that it is possible to spontaneously generate a plasma-induced continuum of blueshifting solitons, opening up new possibilities for pushing supercontinuum generation towards shorter and shorter wavelengths.
RESUMO
We exploit the phenomenon of resonant dispersive wave (RDW) emission in gas-filled hollow capillary fibres (HCFs) to realize time-resolved photoelectron imaging (TRPEI) measurements with an extremely short temporal resolution. By integrating the output end of an HCF directly into a vacuum chamber assembly we demonstrate two-colour deep ultraviolet (DUV)-infrared instrument response functions of just 10 and 11 fs at central pump wavelengths of 250 and 280 nm, respectively. This result represents an advance in the current state of the art for ultrafast photoelectron spectroscopy. We also present an initial TRPEI measurement investigating the excited-state photochemical dynamics operating in the N-methylpyrrolidine molecule. Given the substantial interest in generating extremely short and highly tuneable DUV pulses for many advanced spectroscopic applications, we anticipate our first demonstration will stimulate wider uptake of the novel RDW-based approach for studying ultrafast photochemistry - particularly given the relatively compact and straightforward nature of the HCF setup.