Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Cancer ; 153(10): 1854-1867, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555668

RESUMO

The cellular basis of the apparent aggressiveness in lung cancer is poorly understood but likely associated with functional or molecular features of disseminated cancer cells (DCCs). DCCs from epithelial cancers are mostly detected by antibodies directed against histogenetic markers such as cytokeratin or EpCAM. It has been argued that marker-negative metastatic founder cells might escape detection. We therefore used ex vivo sphere formation for functional detection of candidate metastasis founders. We generated cell suspensions from 199 LN samples of 131 lung cancer patients and placed them into non-adherent cell culture. Sphere formation was associated with detection of DCCs using EpCAM immunocytology and with significantly poorer prognosis. The prognostic impact of sphere formation was strongly associated with high numbers of EpCAM-positive DCCs and aberrant genotypes of expanded spheres. We also noted sphere formation in patients with no evidence of lymphatic spread, however such spheres showed infrequent expression of signature genes associated with spheres from EpCAM-positive samples and displayed neither typical lung cancer mutations (KRAS, TP53, ERBB1) nor copy number variations, but might be linked to disease progression >5 years post curative surgery. We conclude that EpCAM identifies relevant disease-driving DCCs, that such cells can be expanded for model generation and that further research is needed to clarify the functional and prognostic role of rare EpCAM-negative sphere forming cells.


Assuntos
Moléculas de Adesão Celular , Neoplasias Pulmonares , Humanos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Variações do Número de Cópias de DNA , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfonodos/patologia
2.
J Pathol ; 258(3): 250-263, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148685

RESUMO

In melanoma, immunocytology (IC) after sentinel lymph node disaggregation not only enables better quantification of disseminated cancer cells (DCCs) than routine histopathology (HP) but also provides a unique opportunity to detect, isolate, and analyse these earliest harbingers of metachronous metastasis. Here, we explored lymph node IC in non-small cell lung cancer (NSCLC). For 122 NSCLC patients, 220 lymph nodes (LNs) were split in half and prepared for IC and HP. When both methods were compared, IC identified 22% positive patients as opposed to 4.5% by HP, revealing a much higher sensitivity of IC (p < 0.001). Assessment of all available 2,952 LNs of the same patients by HP uncovered additional patients escaping detection of lymphatic tumour spread by IC alone, consistent with the concept of skip metastasis. A combined lymph node status of IC and complete HP on a larger cohort of patients outperformed all risk factors in multivariable analysis for prognosis (p < 0.001; RR = 2.290; CI 1.407-3.728). Moreover, isolation of DCCs and single-cell molecular characterization revealed that (1) LN-DCCs differ from primary tumours in terms of copy number alterations and selected mutations and (2) critical alterations are acquired during colony formation within LNs. We conclude that LN-IC in NSCLC patients when combined with HP improves diagnostic precision, has the potential to reduce total workload, and facilitates molecular characterization of lymphatically spread cancer cells, which may become key for the selection and development of novel systemic therapies. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Evolução Molecular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfonodos/patologia , Metástase Linfática/patologia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos
3.
EMBO J ; 31(1): 214-27, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-22027862

RESUMO

Plant infection by pathogenic fungi requires polarized secretion of enzymes, but little is known about the delivery pathways. Here, we investigate the secretion of cell wall-forming chitin synthases (CHSs) in the corn pathogen Ustilago maydis. We show that peripheral filamentous actin (F-actin) and central microtubules (MTs) form independent tracks for CHSs delivery and both cooperate in cell morphogenesis. The enzyme Mcs1, a CHS that contains a myosin-17 motor domain, is travelling along both MTs and F-actin. This transport is independent of kinesin-3, but mediated by kinesin-1 and myosin-5. Arriving vesicles pause beneath the plasma membrane, but only ~15% of them get exocytosed and the majority is returned to the cell centre by the motor dynein. Successful exocytosis at the cell tip and, to a lesser extent at the lateral parts of the cell requires the motor domain of Mcs1, which captures and tethers the vesicles prior to secretion. Consistently, Mcs1-bound vesicles transiently bind F-actin but show no motility in vitro. Thus, kinesin-1, myosin-5 and dynein mediate bi-directional motility, whereas myosin-17 introduces a symmetry break that allows polarized secretion.


Assuntos
Quitina Sintase/metabolismo , Proteínas Fúngicas/metabolismo , Cinesinas/metabolismo , Miosinas/metabolismo , Ustilago/enzimologia , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Ustilago/metabolismo
4.
PLoS Pathog ; 9(2): e1003177, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23459172

RESUMO

The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi.


Assuntos
Cisteína Proteases/química , Cisteína Proteases/metabolismo , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Ustilago/fisiologia , Virulência , Zea mays/enzimologia , Sequência de Aminoácidos , Cisteína Proteases/genética , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/genética , Interações Hospedeiro-Patógeno , Immunoblotting , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Ustilago/patogenicidade , Zea mays/microbiologia
5.
Plant Cell ; 22(7): 2476-94, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20663961

RESUMO

Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 microm at a velocity of approximately 1.75 microm/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.


Assuntos
Quitina Sintase/metabolismo , Ustilago/patogenicidade , Zea mays/microbiologia , Actinas/metabolismo , Quitina Sintase/genética , Citoesqueleto/metabolismo , Mutação , Ustilago/enzimologia , Virulência
6.
Nat Commun ; 11(1): 4977, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020483

RESUMO

Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells. PIK3CA activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find PIK3CA mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals.


Assuntos
Interleucina-6/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Medula Óssea/patologia , Mama/citologia , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Receptor gp130 de Citocina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-6/genética , Mutação , Metástase Neoplásica/genética , Receptores de Interleucina-6/deficiência , Receptores de Interleucina-6/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral
7.
Nat Commun ; 9(1): 595, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426936

RESUMO

Mouse models indicate that metastatic dissemination occurs extremely early; however, the timing in human cancers is unknown. We therefore determined the time point of metastatic seeding relative to tumour thickness and genomic alterations in melanoma. Here, we find that lymphatic dissemination occurs shortly after dermal invasion of the primary lesion at a median thickness of ~0.5 mm and that typical driver changes, including BRAF mutation and gained or lost regions comprising genes like MET or CDKNA2, are acquired within the lymph node at the time of colony formation. These changes define a colonisation signature that was linked to xenograft formation in immunodeficient mice and death from melanoma. Thus, melanoma cells leave primary tumours early and evolve at different sites in parallel. We propose a model of metastatic melanoma dormancy, evolution and colonisation that will inform direct monitoring of adjuvant therapy targets.


Assuntos
Melanoma/genética , Mutação , Neoplasias Cutâneas/genética , Pele/metabolismo , Animais , Linhagem Celular Tumoral , Hibridização Genômica Comparativa/métodos , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Masculino , Melanoma/patologia , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteínas Proto-Oncogênicas p21(ras)/genética , Pele/patologia , Neoplasias Cutâneas/patologia , Transplante Heterólogo
8.
Cancer Cell ; 33(2): 322-336.e8, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29438700

RESUMO

Oncogene-induced senescence, e.g., in melanocytic nevi, terminates the expansion of pre-malignant cells via transcriptional silencing of proliferation-related genes due to decoration of their promoters with repressive trimethylated histone H3 lysine 9 (H3K9) marks. We show here that structurally distinct H3K9-active demethylases-the lysine-specific demethylase-1 (LSD1) and several Jumonji C domain-containing moieties (such as JMJD2C)-disable senescence and permit Ras/Braf-evoked transformation. In mouse and zebrafish models, enforced LSD1 or JMJD2C expression promoted Braf-V600E-driven melanomagenesis. A large subset of established melanoma cell lines and primary human melanoma samples presented with a collective upregulation of related and unrelated H3K9 demethylase activities, whose targeted inhibition restored senescence, even in Braf inhibitor-resistant melanomas, evoked secondary immune effects and controlled tumor growth in vivo.


Assuntos
Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética , Melanoma/genética , Animais , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Camundongos Nus , Regiões Promotoras Genéticas/genética
9.
EMBO Mol Med ; 6(11): 1371-86, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25358515

RESUMO

Several hundred clinical trials currently explore the role of circulating tumor cell (CTC) analysis for therapy decisions, but assays are lacking for comprehensive molecular characterization of CTCs with diagnostic precision. We therefore combined a workflow for enrichment and isolation of pure CTCs with a non-random whole genome amplification method for single cells and applied it to 510 single CTCs and 189 leukocytes of 66 CTC-positive breast cancer patients. We defined a genome integrity index (GII) to identify single cells suited for molecular characterization by different molecular assays, such as diagnostic profiling of point mutations, gene amplifications and whole genomes of single cells. The reliability of > 90% for successful molecular analysis of high-quality clinical samples selected by the GII enabled assessing the molecular heterogeneity of single CTCs of metastatic breast cancer patients. We readily identified genomic disparity of potentially high relevance between primary tumors and CTCs. Microheterogeneity analysis among individual CTCs uncovered pre-existing cells resistant to ERBB2-targeted therapies suggesting ongoing microevolution at late-stage disease whose exploration may provide essential information for personalized treatment decisions and shed light into mechanisms of acquired drug resistance.


Assuntos
Neoplasias da Mama/diagnóstico , Genômica/métodos , Células Neoplásicas Circulantes/patologia , Patologia Molecular/métodos , Análise de Célula Única/métodos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa