Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Genes Dev ; 37(15-16): 678-680, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673461

RESUMO

Receptor protein tyrosine phosphatases (RPTPs) are involved in a broad list of cellular, developmental, and physiological functions. Altering their expression leads to significant changes in protein phosphorylation linked to a growing list of human diseases, including cancers and neurological disorders. In this issue of Genes & Development, Qian and colleagues (pp. 743-759) present the identification of a monoclonal antibody targeting PTPRD extracellular domain-inducing dimerization and inhibition of the phosphatase activities, causing the proteolysis of dimeric PTPRD by a mechanism involving intracellular degradation pathways. Their study supports the potential of modulating PTPRD via its extracellular domains. This opens a new framework in the clinical manipulation of PTPRD and its closely related family members.


Assuntos
Imunoglobulinas , Proteínas Tirosina Fosfatases , Humanos , Dimerização , Diferenciação Celular , Proteínas Tirosina Fosfatases/genética , Tirosina
2.
Mol Cell ; 82(20): 3826-3839.e9, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36113481

RESUMO

Ribosomal RNAs (rRNAs) are the most abundant cellular RNAs, and their synthesis from rDNA repeats by RNA polymerase I accounts for the bulk of all transcription. Despite substantial variation in rRNA transcription rates across cell types, little is known about cell-type-specific factors that bind rDNA and regulate rRNA transcription to meet tissue-specific needs. Using hematopoiesis as a model system, we mapped about 2,200 ChIP-seq datasets for 250 transcription factors (TFs) and chromatin proteins to human and mouse rDNA and identified robust binding of multiple TF families to canonical TF motifs on rDNA. Using a 47S-FISH-Flow assay developed for nascent rRNA quantification, we demonstrated that targeted degradation of C/EBP alpha (CEBPA), a critical hematopoietic TF with conserved rDNA binding, caused rapid reduction in rRNA transcription due to reduced RNA Pol I occupancy. Our work identifies numerous potential rRNA regulators and provides a template for dissection of TF roles in rRNA transcription.


Assuntos
RNA Polimerase I , Fatores de Transcrição , Humanos , Camundongos , Animais , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Ribossômico/genética , Transcrição Gênica , DNA Ribossômico/genética , RNA , Cromatina
3.
Mol Cell ; 70(6): 995-1007.e11, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29910111

RESUMO

Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.


Assuntos
Receptores Proteína Tirosina Quinases/fisiologia , Receptor EphA4/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Comunicação Celular , Drosophila/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligantes , Proteínas Oncogênicas/metabolismo , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Tirosina/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(14): e2221083120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972446

RESUMO

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.


Assuntos
Magnésio , Canais de Cátion TRPM , Magnésio/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transdução de Sinais , Metabolismo Energético
5.
PLoS Genet ; 18(2): e1009644, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139074

RESUMO

Transcription of the ~200 mouse and human ribosomal RNA genes (rDNA) by RNA Polymerase I (RPI/PolR1) accounts for 80% of total cellular RNA, around 35% of all nuclear RNA synthesis, and determines the cytoplasmic ribosome complement. It is therefore a major factor controlling cell growth and its misfunction has been implicated in hypertrophic and developmental disorders. Activation of each rDNA repeat requires nucleosome replacement by the architectural multi-HMGbox factor UBTF to create a 15.7 kbp nucleosome free region (NFR). Formation of this NFR is also essential for recruitment of the TBP-TAFI factor SL1 and for preinitiation complex (PIC) formation at the gene and enhancer-associated promoters of the rDNA. However, these promoters show little sequence commonality and neither UBTF nor SL1 display significant DNA sequence binding specificity, making what drives PIC formation a mystery. Here we show that cooperation between SL1 and the longer UBTF1 splice variant generates the specificity required for rDNA promoter recognition in cell. We find that conditional deletion of the TAF1B subunit of SL1 causes a striking depletion of UBTF at both rDNA promoters but not elsewhere across the rDNA. We also find that while both UBTF1 and -2 variants bind throughout the rDNA NFR, only UBTF1 is present with SL1 at the promoters. The data strongly suggest an induced-fit model of RPI promoter recognition in which UBTF1 plays an architectural role. Interestingly, a recurrent UBTF-E210K mutation and the cause of a pediatric neurodegeneration syndrome provides indirect support for this model. E210K knock-in cells show enhanced levels of the UBTF1 splice variant and a concomitant increase in active rDNA copies. In contrast, they also display reduced rDNA transcription and promoter recruitment of SL1. We suggest the underlying cause of the UBTF-E210K syndrome is therefore a reduction in cooperative UBTF1-SL1 promoter recruitment that may be partially compensated by enhanced rDNA activation.


Assuntos
Proteínas Pol1 do Complexo de Iniciação de Transcrição , RNA Polimerase I , Animais , Criança , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Humanos , Camundongos , Nucleossomos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase I/genética , RNA Ribossômico/genética , Transcrição Gênica
6.
J Cell Physiol ; 239(8): e31303, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764354

RESUMO

The tumor suppressor p14/19ARF regulates ribosomal RNA (rRNA) synthesis by controlling the nucleolar localization of Transcription Termination Factor 1 (TTF1). However, the role played by TTF1 in regulating the rRNA genes and in potentially controlling growth has remained unclear. We now show that TTF1 expression regulates cell growth by determining the cellular complement of ribosomes. Unexpectedly, it achieves this by acting as a "roadblock" to synthesis of the noncoding LncRNA and pRNA that we show are generated from the "Spacer Promoter" duplications present upstream of the 47S pre-rRNA promoter on the mouse and human ribosomal RNA genes. Unexpectedly, the endogenous generation of these noncoding RNAs does not induce CpG methylation or gene silencing. Rather, it acts in cis to suppress 47S preinitiation complex formation and hence de novo pre-rRNA synthesis by a mechanism reminiscent of promoter interference or occlusion. Taken together, our data delineate a pathway from p19ARF to cell growth suppression via the regulation of ribosome biogenesis by noncoding RNAs and validate a key cellular growth law in mammalian cells.


Assuntos
Regiões Promotoras Genéticas , RNA Longo não Codificante , Fatores de Transcrição , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Animais , Camundongos , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proliferação de Células/genética , Ribossomos/metabolismo , Ribossomos/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Genes de RNAr/genética , Regulação da Expressão Gênica
7.
Immunity ; 43(2): 277-88, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26231120

RESUMO

Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system, receptor protein tyrosine phosphatase sigma (PTPRS) is expressed specifically on pDCs. Surface PTPRS was rapidly downregulated after pDC activation, and only PTPRS(-) pDCs produced IFN-α. Antibody-mediated PTPRS crosslinking inhibited pDC activation, whereas PTPRS knockdown enhanced IFN response in a pDC cell line. Similarly, murine Ptprs and the homologous receptor phosphatase Ptprf were specifically co-expressed in murine pDCs. Haplodeficiency or DC-specific deletion of Ptprs on Ptprf-deficient background were associated with enhanced IFN response of pDCs, leukocyte infiltration in the intestine and mild colitis. Thus, PTPRS represents an evolutionarily conserved pDC-specific inhibitory receptor, and is required to prevent spontaneous IFN production and immune-mediated intestinal inflammation.


Assuntos
Colite/imunologia , Células Dendríticas/imunologia , Intestinos/imunologia , Leucócitos/fisiologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Diferenciação Celular , Movimento Celular/genética , Células Cultivadas , Colite/genética , Modelos Animais de Doenças , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética
8.
Cell ; 136(2): 213-4, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19167325

RESUMO

Protein tyrosine phosphatases (PTPs) are central players in many biological processes. In this issue, Barr et al. (2009) analyze 22 different PTP structures to define their common and unique features. This effort provides key insights into the regulation of PTP activity that could lead to the development of new therapeutics.


Assuntos
Proteínas Tirosina Fosfatases/química , Humanos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteoma , Relação Estrutura-Atividade
9.
Public Pers Manage ; 53(3): 351-376, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39135749

RESUMO

This study employed a longitudinal model to investigate the reciprocal relationships between interpersonal citizenship behavior (OCB-I) and absenteeism at the team level. The research utilized four waves of data from a sample comprising over 5,000 employees in 168 teams within a large Canadian public organization. Drawing upon the focus theory of normative conduct and the collective identity perspective, our findings indicated that a positive change in OCB-I, which encompasses helping behaviors, led to a subsequent decrease in team absenteeism. In addition, emphasizing the identity perspective and allocation of time perspective, our study demonstrated that increased absenteeism within a given period was associated with a subsequent reduction in team OCB-I.

10.
Cancer Immunol Immunother ; 72(6): 1343-1353, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441193

RESUMO

Dendritic cells have been at the forefront of cancer-immunotherapy research for over 2 decades. They elicited that attention by having an unprecedented capacity to mount T cells responses against tumors. However, the clinical use of DC-based vaccination against established malignancies has resulted in limited clinical benefits. Several factors are responsible for limiting the efficacy of DC-based immunotherapy, such as the harmful influence of the tumor microenvironment on DCs activity. New insights into the inner process of DC-mediated T cell activation have supported the development of new strategies that potentiate DCs-based therapies. Herein, we identify signaling cascades that have recently been targeted by small molecules and biologicals to promote the activation of monocyte-derived DCs and decrease their susceptibility to becoming tolerogenic. While Statins can markedly enhance antigen presentation, protein kinase inhibitors can be used to increase the expression of co-receptors and adhesion molecules. STAT3 and IDO can be modulated to limit the production of regulatory factors that work against differentiation and activation. The targeting of multiple pathways simultaneously has also been found to produce synergism and drastically enhance DCs activity. Some of these strategies have recently yielded positive results in clinical settings against established malignancies such as non-small cell lung cancer. The emergence of these approaches opens the door for a new generation of potent dendritic cell-based therapeutics to fight cancer.


Assuntos
Vacinas Anticâncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células Dendríticas , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Monócitos , Neoplasias Pulmonares/metabolismo , Imunoterapia/métodos , Microambiente Tumoral
11.
J Virol ; 96(4): e0195321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878918

RESUMO

While combination antiretroviral therapy maintains undetectable viremia in people living with HIV (PLWH), a lifelong treatment is necessary to prevent viremic rebound after therapy cessation. This rebound seemed mainly caused by long-lived HIV-1 latently infected cells reverting to a viral productive status. Reversing latency and elimination of these cells by the so-called shock-and-kill strategy is one of the main investigated leads to achieve an HIV-1 cure. Small molecules referred to as latency reversal agents (LRAs) proved to efficiently reactivate latent CD4+ T cells. However, the LRA impact on de novo infection or HIV-1 production in productively infected macrophages remains elusive. Nontoxic doses of bryostatin-1, JQ1, and romidepsin were investigated in human monocyte-derived macrophages (MDMs). Treatment with bryostatin-1 or romidepsin resulted in a downregulation of CD4 and CCR5 receptors, respectively, accompanied by a reduction of R5 tropic virus infection. HIV-1 replication was mainly regulated by receptor modulation for bryostatin-1, while romidepsin effects rely on upregulation of SAMHD1 activity. LRA stimulation of chronically infected cells did not enhance HIV-1 production or gene expression. Surprisingly, bryostatin-1 caused a major decrease in viral production. This effect was not viral strain specific but appears to occur only in myeloid cells. Bryostatin-1 treatment of infected MDMs led to decreased amounts of capsid and matrix mature proteins with little to no modulation of precursors. Our observations revealed that bryostatin-1-treated myeloid and CD4+ T cells respond differently upon HIV-1 infection. Therefore, additional studies are warranted to more fully assess the efficiency of HIV-1 eradicating strategies. IMPORTANCE HIV-1 persists in a cellular latent form despite therapy that quickly propagates infection upon treatment interruption. Reversing latency would contribute to eradicate these cells, closing the gap to a cure. Macrophages are an acknowledged HIV-1 reservoir during therapy and are suspected to harbor latency establishment in vivo. However, the impact of latency reversal agents (LRAs) on HIV-1 infection and viral production in human macrophages is poorly known but nonetheless crucial to probe the safety of this strategy. In this in vitro study, we discovered encouraging antireplicative features of distinct LRAs in human macrophages. We also described a new viral production inhibition mechanism by protein kinase C agonists that is specific to myeloid cells. This study provides new insights into HIV-1 propagation restriction potentials by LRAs in human macrophages and underline the importance of assessing latency reversal strategy on all HIV-1-targeted cells.


Assuntos
Fármacos Anti-HIV/farmacologia , Briostatinas/farmacologia , HIV-1/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Depsipeptídeos/farmacologia , Diterpenos/farmacologia , Proteína do Núcleo p24 do HIV/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Receptores CCR5/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
Immun Ageing ; 20(1): 31, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400834

RESUMO

BACKGROUND: Human aging is characterized by a state of chronic inflammation, termed inflammaging, for which the causes are incompletely understood. It is known, however, that macrophages play a driving role in establishing inflammaging by promoting pro-inflammatory rather than anti-inflammatory responses. Numerous genetic and environmental risk factors have been implicated with inflammaging, most of which are directly linked to pro-inflammatory mediators IL-6, IL1Ra, and TNFα. Genes involved in the signaling and production of those molecules have also been highlighted as essential contributors. TAOK3 is a serine/threonine kinase of the STE-20 kinase family that has been associated with an increased risk of developing auto-immune conditions in several genome-wide association studies (GWAS). Yet, the functional role of TAOK3 in inflammation has remained unexplored. RESULTS: We found that mice deficient in the serine/Threonine kinase Taok3 developed severe inflammatory disorders with age, which was more pronounced in female animals. Further analyses revealed a drastic shift from lymphoid to myeloid cells in the spleens of those aged mice. This shift was accompanied by hematopoietic progenitor cells skewing in Taok3-/- mice that favored myeloid lineage commitment. Finally, we identified that the kinase activity of the enzyme plays a vital role in limiting the establishment of proinflammatory responses in macrophages. CONCLUSIONS: Essentially, Taok3 deficiency promotes the accumulation of monocytes in the periphery and their adoption of a pro-inflammatory phenotype. These findings illustrate the role of Taok3 in age-related inflammation and highlight the importance of genetic risk factors in this condition.

13.
Gut ; 71(1): 89-99, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33563644

RESUMO

OBJECTIVES: Alterations in the intestinal microbiota are linked with a wide range of autoimmune and inflammatory conditions, including inflammatory bowel diseases (IBD), where pathobionts penetrate the intestinal barrier and promote inflammatory reactions. In patients with IBD, the ability of intestinal macrophages to efficiently clear invading pathogens is compromised resulting in increased bacterial translocation and excessive immune reactions. Here, we investigated how an IBD-associated loss-of-function variant in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) gene, or loss of PTPN2 expression affected the ability of macrophages to respond to invading bacteria. DESIGN: IBD patient-derived macrophages with wild-type (WT) PTPN2 or carrying the IBD-associated PTPN2 SNP, peritoneal macrophages from WT and constitutive PTPN2-knockout mice, as well as mice specifically lacking PTPN2 in macrophages were infected with non-invasive K12 Escherichia coli, the human adherent-invasive E. coli (AIEC) LF82, or a novel mouse AIEC (mAIEC) strain. RESULTS: Loss of PTPN2 severely compromises the ability of macrophages to clear invading bacteria. Specifically, loss of functional PTPN2 promoted pathobiont invasion/uptake into macrophages and intracellular survival/proliferation by three distinct mechanisms: Increased bacterial uptake was mediated by enhanced expression of carcinoembryonic antigen cellular adhesion molecule (CEACAM)1 and CEACAM6 in PTPN2-deficient cells, while reduced bacterial clearance resulted from defects in autophagy coupled with compromised lysosomal acidification. In vivo, mice lacking PTPN2 in macrophages were more susceptible to mAIEC infection and mAIEC-induced disease. CONCLUSIONS: Our findings reveal a tripartite regulatory mechanism by which PTPN2 preserves macrophage antibacterial function, thus crucially contributing to host defence against invading bacteria.


Assuntos
Aderência Bacteriana , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/imunologia , Animais , Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas Ligadas por GPI/metabolismo , Microbioma Gastrointestinal , Predisposição Genética para Doença , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Camundongos Knockout , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética
14.
J Virol ; 95(20): e0118821, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34379507

RESUMO

Several host factors influence HIV-1 infection and replication. The p53-mediated antiviral role in monocyte-derived macrophages (MDMs) was previously highlighted. Indeed, an increase in p53 level results in a stronger restriction against HIV-1 early replication steps through SAMHD1 activity. In this study, we investigated the potential role of some p53 isoforms in HIV-1 infection. Transfection of isoform-specific small interfering RNA (siRNA) induced distinctive effects on the virus life cycle. For example, in contrast to an siRNA targeting all isoforms, a knockdown of Δ133p53 transcripts reduced virus replication in MDMs that was correlated with a decrease in phosphorylated inactive SAMHD1. Combination of Δ133p53 knockdown and nutlin-3, a pharmacological inhibitor of MDM2 that stabilizes p53, further reduced susceptibility of MDMs to HIV-1 infection, thus suggesting an inhibitory role of Δ133p53 toward p53 antiviral activity. In contrast, p53ß knockdown in MDMs increased the viral production independently of SAMHD1. Moreover, experiments with a Nef-deficient virus showed that this viral protein plays a protective role against the antiviral environment mediated by p53. Finally, HIV-1 infection affected the expression pattern of p53 isoforms by increasing p53ß and p53γ mRNA levels while stabilizing the protein level of p53α and some isoforms from the p53ß subclass. The balance between the various p53 isoforms is therefore an important factor in the overall susceptibility of macrophages to HIV-1 infection, fine-tuning the p53 response against HIV-1. This study brings a new understanding of the complex role of p53 in virus replication processes in myeloid cells. IMPORTANCE As of today, HIV-1 infection is still considered a global pandemic without a functional cure, partly because of the presence of stable viral reservoirs. Macrophages constitute one of these cell reservoirs, contributing to the viral persistence. Studies investigating the host factors involved in cell susceptibility to HIV-1 infection might lead to a better understanding of reservoir formation and will eventually allow the development of an efficient cure. Our team previously showed the antiviral role of p53 in macrophages, which acts by compromising the early steps of HIV-1 replication. In this study, we demonstrate the involvement of p53 isoforms, which regulate p53 activity and define the cellular environment influencing viral replication. In addition, the results concerning the potential role of p53 in antiviral innate immunity could be transposed to other fields of virology and suggest that knowledge in oncology can be applied to HIV-1 research.


Assuntos
Infecções por HIV/metabolismo , Macrófagos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/patogenicidade , HIV-1/fisiologia , Humanos , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Macrófagos/virologia , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/genética , Ligação Viral , Replicação Viral
15.
FASEB J ; 35(7): e21708, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169549

RESUMO

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.


Assuntos
Metabolismo Energético/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Tirosina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HCT116 , Células HEK293 , Humanos , Fosforilação/fisiologia , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
16.
J Immunol ; 204(9): 2392-2400, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213561

RESUMO

Deregulation of mRNA translation engenders many human disorders, including obesity, neurodegenerative diseases, and cancer, and is associated with pathogen infections. The role of eIF4E-dependent translational control in macrophage inflammatory responses in vivo is largely unexplored. In this study, we investigated the involvement of the translation inhibitors eIF4E-binding proteins (4E-BPs) in the regulation of macrophage inflammatory responses in vitro and in vivo. We show that the lack of 4E-BPs exacerbates inflammatory polarization of bone marrow-derived macrophages and that 4E-BP-null adipose tissue macrophages display enhanced inflammatory gene expression following exposure to a high-fat diet (HFD). The exaggerated inflammatory response in HFD-fed 4E-BP-null mice coincides with significantly higher weight gain, higher Irf8 mRNA translation, and increased expression of IRF8 in adipose tissue compared with wild-type mice. Thus, 4E-BP-dependent translational control limits, in part, the proinflammatory response during HFD. These data underscore the activity of the 4E-BP-IRF8 axis as a paramount regulatory mechanism of proinflammatory responses in adipose tissue macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Tecido Adiposo/metabolismo , Inflamação/genética , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Biossíntese de Proteínas/genética , Animais , Medula Óssea/metabolismo , Dieta Hiperlipídica/métodos , Fator de Iniciação 4E em Eucariotos/genética , Expressão Gênica/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Cell Mol Life Sci ; 78(13): 5427-5445, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34089346

RESUMO

Cyclin M (CNNM1-4) proteins maintain cellular and body magnesium (Mg2+) homeostasis. Using various biochemical approaches, we have identified members of the CNNM family as direct interacting partners of ADP-ribosylation factor-like GTPase 15 (ARL15), a small GTP-binding protein. ARL15 interacts with CNNMs at their carboxyl-terminal conserved cystathionine-ß-synthase (CBS) domains. In silico modeling of the interaction between CNNM2 and ARL15 supports that the small GTPase specifically binds the CBS1 and CNBH domains. Immunocytochemical experiments demonstrate that CNNM2 and ARL15 co-localize in the kidney, with both proteins showing subcellular localization in the endoplasmic reticulum, Golgi apparatus and the plasma membrane. Most importantly, we found that ARL15 is required for forming complex N-glycosylation of CNNMs. Overexpression of ARL15 promotes complex N-glycosylation of CNNM3. Mg2+ uptake experiments with a stable isotope demonstrate that there is a significant increase of 25Mg2+ uptake upon knockdown of ARL15 in multiple kidney cancer cell lines. Altogether, our results establish ARL15 as a novel negative regulator of Mg2+ transport by promoting the complex N-glycosylation of CNNMs.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Ciclinas/metabolismo , Homeostase , Magnésio/metabolismo , Fatores de Ribosilação do ADP/genética , Transporte Biológico , Ciclinas/genética , Glicosilação , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica
18.
Proc Natl Acad Sci U S A ; 116(8): 2925-2934, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718434

RESUMO

Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.


Assuntos
Reprogramação Celular/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Tirosina Fosfatases/genética , Quinases Proteína-Quinases Ativadas por AMP , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions , Proteínas de Ciclo Celular/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Regeneração Hepática/genética , Células MCF-7 , Magnésio/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias/patologia , Proteínas Quinases/genética
19.
Glia ; 69(2): 255-280, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32910482

RESUMO

Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.


Assuntos
Infecções por HIV , HIV-1 , Complexo AIDS Demência , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Fatores de Crescimento Neural , Neuroproteção , Qualidade de Vida
20.
J Neurovirol ; 27(2): 279-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33646495

RESUMO

HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.


Assuntos
Complexo AIDS Demência/metabolismo , Astrócitos/virologia , Quimiocina CX3CL1/biossíntese , Astrócitos/imunologia , Astrócitos/metabolismo , Células Cultivadas , HIV-1 , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa