Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875213

RESUMO

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Assuntos
Proteínas de Insetos/metabolismo , Mitocôndrias/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas Quinases/metabolismo , Tribolium/enzimologia , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Estabilidade Enzimática , Humanos , Proteínas de Insetos/genética , Cinética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Simulação de Acoplamento Molecular , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Relação Estrutura-Atividade , Tribolium/genética
2.
Proc Natl Acad Sci U S A ; 121(10): e2313540121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416681

RESUMO

Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.


Assuntos
Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Quinases , Humanos , Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
J Biol Chem ; 300(8): 107541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992438

RESUMO

The amyloid precursor protein (APP) is a key protein in Alzheimer's disease synthesized in the endoplasmic reticulum (ER) and translocated to the plasma membrane where it undergoes proteolytic cleavages by several proteases. Conversely, to other known proteases, we previously elucidated rhomboid protease RHBDL4 as a novel APP processing enzyme where several cleavages likely occur already in the ER. Interestingly, the pattern of RHBDL4-derived large APP C-terminal fragments resembles those generated by the η-secretase or MT5-MMP, which was described to generate so-called Aη fragments. The similarity in large APP C-terminal fragments between both proteases raised the question of whether RHBDL4 may contribute to η-secretase activity and Aη-like fragments. Here, we identified two cleavage sites of RHBDL4 in APP by mass spectrometry, which, intriguingly, lie in close proximity to the MT5-MMP cleavage sites. Indeed, we observed that RHBDL4 generates Aη-like fragments in vitro without contributions of α-, ß-, or γ-secretases. Such Aη-like fragments are likely generated in the ER since RHBDL4-derived APP-C-terminal fragments do not reach the cell surface. Inherited, familial APP mutations appear to not affect this processing pathway. In RHBDL4 knockout mice, we observed increased cerebral full-length APP in comparison to wild type (WT) in support of RHBDL4 being a physiologically relevant protease for APP. Furthermore, we found secreted Aη fragments in dissociated mixed cortical cultures from WT mice, however significantly fewer Aη fragments in RHBDL4 knockout cultures. Our data underscores that RHBDL4 contributes to the η-secretease-like processing of APP and that RHBDL4 is a physiologically relevant protease for APP.


Assuntos
Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Retículo Endoplasmático/metabolismo , Células HEK293 , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Proteólise
4.
Brain ; 147(3): 887-899, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804111

RESUMO

There are 78 loci associated with Parkinson's disease in the most recent genome-wide association study (GWAS), yet the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate gene from each Parkinson's disease locus and identify variants and pathways potentially involved in Parkinson's disease. We trained a machine learning model to predict Parkinson's disease-associated genes from GWAS loci using genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candidate genes in each locus and identified novel pathways potentially involved in Parkinson's disease, such as the inositol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 and MLX may be involved in Parkinson's disease, and burden tests of rare variants further support that CNIP3, LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional studies are needed to further analyse the involvements of these genes and pathways in Parkinson's disease.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Fosfatos de Inositol , Neurônios Dopaminérgicos , Aprendizado de Máquina , Fosfotransferases (Aceptor do Grupo Fosfato)
5.
Nature ; 566(7744): 411-414, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30742075

RESUMO

Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.


Assuntos
Microscopia Crioeletrônica , Cianobactérias/química , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/ultraestrutura , NADPH Desidrogenase/química , NADPH Desidrogenase/ultraestrutura , Oxigênio/metabolismo , Fotossíntese , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Cianobactérias/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Ferredoxinas/metabolismo , Modelos Biológicos , Modelos Moleculares , NADPH Desidrogenase/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Plastoquinona/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
6.
J Biol Chem ; 299(4): 103064, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841480

RESUMO

Gßγ subunits mediate many different signaling processes in various compartments of the cell, including the nucleus. To gain insight into the functions of nuclear Gßγ signaling, we investigated the functional role of Gßγ signaling in the regulation of GPCR-mediated gene expression in primary rat neonatal cardiac fibroblasts. We identified a novel, negative, regulatory role for the Gß1γ dimer in the fibrotic response. Depletion of Gß1 led to derepression of the fibrotic response at the mRNA and protein levels under basal conditions and an enhanced fibrotic response after sustained stimulation of the angiotensin II type I receptor. Our genome-wide chromatin immunoprecipitation experiments revealed that Gß1 colocalized and interacted with RNA polymerase II on fibrotic genes in an angiotensin II-dependent manner. Additionally, blocking transcription with inhibitors of Cdk9 prevented association of Gßγ with transcription complexes. Together, our findings suggest that Gß1γ is a novel transcriptional regulator of the fibrotic response that may act to restrict fibrosis to conditions of sustained fibrotic signaling. Our work expands the role for Gßγ signaling in cardiac fibrosis and may have broad implications for the role of nuclear Gßγ signaling in other cell types.


Assuntos
Fibroblastos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Regulação da Expressão Gênica , Miocárdio , RNA Polimerase II , Transcrição Gênica , Animais , Ratos , Angiotensina II/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais/fisiologia , Miocárdio/citologia , Miocárdio/patologia , Fibrose
7.
Brain ; 146(5): 1859-1872, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370000

RESUMO

The association between glucocerebrosidase, encoded by GBA, and Parkinson's disease (PD) highlights the role of the lysosome in PD pathogenesis. Genome-wide association studies in PD have revealed multiple associated loci, including the GALC locus on chromosome 14. GALC encodes the lysosomal enzyme galactosylceramidase, which plays a pivotal role in the glycosphingolipid metabolism pathway. It is still unclear whether GALC is the gene driving the association in the chromosome 14 locus and, if so, by which mechanism. We first aimed to examine whether variants in the GALC locus and across the genome are associated with galactosylceramidase activity. We performed a genome-wide association study in two independent cohorts from (i) Columbia University; and (ii) the Parkinson's Progression Markers Initiative study, followed by a meta-analysis with a total of 976 PD patients and 478 controls with available data on galactosylceramidase activity. We further analysed the effects of common GALC variants on expression and galactosylceramidase activity using genomic colocalization methods. Mendelian randomization was used to study whether galactosylceramidase activity may be causal in PD. To study the role of rare GALC variants, we analysed sequencing data from 5028 PD patients and 5422 controls. Additionally, we studied the functional impact of GALC knockout on alpha-synuclein accumulation and on glucocerebrosidase activity in neuronal cell models and performed in silico structural analysis of common GALC variants associated with altered galactosylceramidase activity. The top hit in PD genome-wide association study in the GALC locus, rs979812, is associated with increased galactosylceramidase activity (b = 1.2; SE = 0.06; P = 5.10 × 10-95). No other variants outside the GALC locus were associated with galactosylceramidase activity. Colocalization analysis demonstrated that rs979812 was also associated with increased galactosylceramidase expression. Mendelian randomization suggested that increased galactosylceramidase activity may be causally associated with PD (b = 0.025, SE = 0.007, P = 0.0008). We did not find an association between rare GALC variants and PD. GALC knockout using CRISPR-Cas9 did not lead to alpha-synuclein accumulation, further supporting that increased rather than reduced galactosylceramidase levels may be associated with PD. The structural analysis demonstrated that the common variant p.I562T may lead to improper maturation of galactosylceramidase affecting its activity. Our results nominate GALC as the gene associated with PD in this locus and suggest that the association of variants in the GALC locus may be driven by their effect of increasing galactosylceramidase expression and activity. Whether altering galactosylceramidase activity could be considered as a therapeutic target should be further studied.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Glucosilceramidase/genética , Estudo de Associação Genômica Ampla , Mutação , Hidrolases/genética
8.
Mov Disord ; 38(10): 1806-1812, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381728

RESUMO

BACKGROUND: Several lysosomal genes are associated with Parkinson's disease (PD), yet the association between PD and ARSA remains unclear. OBJECTIVES: To study rare ARSA variants in PD. METHODS: To study rare ARSA variants (minor allele frequency < 0.01) in PD, we performed burden analyses in six independent cohorts with 5801 PD patients and 20,475 controls, followed by a meta-analysis. RESULTS: We found evidence for associations between functional ARSA variants and PD in four cohorts (P ≤ 0.05 in each) and in the meta-analysis (P = 0.042). We also found an association between loss-of-function variants and PD in the United Kingdom Biobank cohort (P = 0.005) and in the meta-analysis (P = 0.049). These results should be interpreted with caution as no association survived multiple comparisons correction. Additionally, we describe two families with potential co-segregation of ARSA p.E382K and PD. CONCLUSIONS: Rare functional and loss-of-function ARSA variants may be associated with PD. Further replications in large case-control/familial cohorts are required. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Frequência do Gene , Doença de Parkinson/genética , Doença de Parkinson/complicações , Reino Unido , Cerebrosídeo Sulfatase
9.
Methods ; 203: 17-27, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35331912

RESUMO

Patient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson's disease (PD) - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain essential as organoid models evolve. To solve this problem, we have designed a workflow to reproducibly extract proteins from brain organoids, measure global turnover using mass spectrometry, and statistically investigate turnover differences between genotypes. We also provide robust methodology for data filtering and statistical treatment of turnover data. Using human midbrain organoids (hMO) as a model system, our method accurately characterized the half-lives of 773 midbrain proteins. We compared these half-lives both to Parkin knockout hMOs and to previously reported data from primary cell cultures and in vivo models. Overall, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Técnicas de Cultura de Células , Humanos , Espectrometria de Massas , Neurônios/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(31): 15616-15624, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308240

RESUMO

Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (PSKAT-O = 1.6 × 10-4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (PSKAT-O = 7.4 × 10-5). Mutations in both PRKN and LRRK2 are known causes of Parkinson's disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10-4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.


Assuntos
Hanseníase , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Doença de Parkinson , Ubiquitina-Proteína Ligases , Feminino , Humanos , Hanseníase/genética , Hanseníase/metabolismo , Hanseníase/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Masculino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
J Proteome Res ; 20(1): 506-517, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242952

RESUMO

The generation of mitochondrial-derived vesicles (MDVs) is implicated in a plethora of vital cell functions, from mitochondrial quality control to peroxisomal biogenesis. The discovery of distinct subtypes of MDVs has revealed the selective inclusion of mitochondrial cargo in response to varying stimuli. However, the true scope and variety of MDVs is currently unclear, and unbiased approaches have yet to be used to understand their biology. Furthermore, as mitochondrial dysfunction has been implicated in many neurodegenerative diseases, it is essential to understand MDV pathways in the nervous system. To address this, we sought to identify the cargo in brain MDVs. We used an in vitro budding assay and proteomic approach to identify proteins selectively enriched in MDVs. 72 proteins were identified as MDV-enriched, of which 31% were OXPHOS proteins. Interestingly, the OXPHOS proteins localized to specific modules of the respiratory complexes, hinting at the inclusion of sub-assemblies in MDVs. Small TIM chaperones were also highly enriched in MDVs, linking mitochondrial chaperone-mediated protein transport to MDV formation. As the two Parkinson's disease genes PINK1 and Parkin have been previously implicated in MDV biogenesis in response to oxidative stress, we compared the MDV proteomes from the brains of wild-type mice with those of PINK1-/- and Parkin-/- mice. No significant difference was found, suggesting that PINK1- and Parkin-dependent MDVs make up a small proportion of all MDVs in the brain. Our findings demonstrate a previously uncovered landscape of MDV complexity and provide a foundation from which further novel MDV functions can be discovered. Data are available via ProteomeXchange with identifier PXD020197.


Assuntos
Encéfalo , Mitocôndrias , Doença de Parkinson , Proteômica , Animais , Encéfalo/metabolismo , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
J Biol Chem ; 295(12): 3808-3825, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32029478

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Superóxido Dismutase-1/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Anticorpos/imunologia , Linhagem Celular , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Agregados Proteicos , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Transgênicos , Superóxido Dismutase-1/química , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/imunologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
13.
Hum Mol Genet ; 28(17): 2811-2825, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30994895

RESUMO

Mutations in Parkin (PARK2), which encodes an E3 ubiquitin ligase implicated in mitophagy, are the most common cause of early-onset Parkinson's disease (EOPD). Hundreds of naturally occurring Parkin variants have been reported, both in Parkinson's disease (PD) patient and population databases. However, the effects of the majority of these variants on the function of Parkin and in PD pathogenesis remain unknown. Here we develop a framework for classification of the pathogenicity of Parkin variants based on the integration of clinical and functional evidence-including measures of mitophagy and protein stability and predictive structural modeling-and assess 51 naturally occurring Parkin variants accordingly. Surprisingly, only a minority of Parkin variants, even among those previously associated with PD, disrupted Parkin function. Moreover, a few of these naturally occurring Parkin variants actually enhanced mitophagy. Interestingly, impaired mitophagy in several of the most common pathogenic Parkin variants could be rescued both by naturally occurring (p.V224A) and structure-guided designer (p.W403A; p.F146A) hyperactive Parkin variants. Together, the findings provide a coherent framework to classify Parkin variants based on pathogenicity and suggest that several pathogenic Parkin variants represent promising targets to stratify patients for genotype-specific drug design.


Assuntos
Suscetibilidade a Doenças , Variação Genética , Doença de Parkinson/etiologia , Ubiquitina-Proteína Ligases/genética , Alelos , Predisposição Genética para Doença , Humanos , Mitofagia/genética , Terapia de Alvo Molecular , Mutação , Mutação de Sentido Incorreto , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
14.
Clin Genet ; 100(1): 51-58, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713342

RESUMO

GCH1 mutations have been associated with dopa-responsive dystonia (DRD), Parkinson's disease (PD) and tetrahydrobiopterin (BH4 )-deficient hyperphenylalaninemia B. Recently, GCH1 mutations have been reported in five patients with hereditary spastic paraplegia (HSP). Here, we analyzed a total of 400 HSP patients (291 families) from different centers across Canada by whole exome sequencing (WES). Three patients with heterozygous GCH1 variants were identified: monozygotic twins with a p.(Ser77_Leu82del) variant, and a patient with a p.(Val205Glu) variant. The former variant is predicted to be likely pathogenic and the latter is pathogenic. The three patients presented with childhood-onset lower limb spasticity, hyperreflexia and abnormal plantar responses. One of the patients had diurnal fluctuations, and none had parkinsonism or dystonia. Phenotypic differences between the monozygotic twins were observed, who responded well to levodopa treatment. Pathway enrichment analysis suggested that GCH1 shares processes and pathways with other HSP-associated genes, and structural analysis of the variants indicated a disruptive effect. In conclusion, GCH1 mutations may cause HSP; therefore, we suggest a levodopa trial in HSP patients and including GCH1 in the screening panels of HSP genes. Clinical differences between monozygotic twins suggest that environmental factors, epigenetics, and stochasticity could play a role in the clinical presentation.


Assuntos
GTP Cicloidrolase/genética , Mutação/genética , Paraplegia Espástica Hereditária/genética , Adulto , Canadá , Criança , Feminino , Humanos , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Transtornos Parkinsonianos/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/tratamento farmacológico , Gêmeos Monozigóticos/genética
15.
Ann Neurol ; 87(1): 139-153, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31658403

RESUMO

OBJECTIVE: The TMEM175/GAK/DGKQ locus is the 3rd strongest risk locus in genome-wide association studies of Parkinson disease (PD). We aimed to identify the specific disease-associated variants in this locus, and their potential implications. METHODS: Full sequencing of TMEM175/GAK/DGKQ followed by genotyping of specific associated variants was performed in PD (n = 1,575) and rapid eye movement sleep behavior disorder (RBD) patients (n = 533) and in controls (n = 1,583). Adjusted regression models and a meta-analysis were performed. Association between variants and glucocerebrosidase (GCase) activity was analyzed in 715 individuals with available data. Homology modeling, molecular dynamics simulations, and lysosomal localization experiments were performed on TMEM175 variants to determine their potential effects on structure and function. RESULTS: Two coding variants, TMEM175 p.M393T (odds ratio [OR] = 1.37, p = 0.0003) and p.Q65P (OR = 0.72, p = 0.005), were associated with PD, and p.M393T was also associated with RBD (OR = 1.59, p = 0.001). TMEM175 p.M393T was associated with reduced GCase activity. Homology modeling and normal mode analysis demonstrated that TMEM175 p.M393T creates a polar side-chain in the hydrophobic core of the transmembrane, which could destabilize the domain and thus impair either its assembly, maturation, or trafficking. Molecular dynamics simulations demonstrated that the p.Q65P variant may increase stability and ion conductance of the transmembrane protein, and lysosomal localization was not affected by these variants. INTERPRETATION: Coding variants in TMEM175 are likely to be responsible for the association in the TMEM175/GAK/DGKQ locus, which could be mediated by affecting GCase activity. ANN NEUROL 2020;87:139-153.


Assuntos
Canais de Potássio/genética , Sinucleinopatias/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Genótipo , Glucosilceramidase/metabolismo , Humanos , Lisossomos/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Dinâmica Molecular , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio/fisiologia , Transtorno do Comportamento do Sono REM/genética , Transtorno do Comportamento do Sono REM/fisiopatologia , Sinucleinopatias/fisiopatologia
16.
Mov Disord ; 36(7): 1664-1675, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33598982

RESUMO

BACKGROUND: Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES: We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS: We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS: The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS: Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Paraplegia Espástica Hereditária , Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares/genética , Canadá , Humanos , Metaloendopeptidases/genética , Mutação/genética , Paraplegia , Paraplegia Espástica Hereditária/genética , Fatores de Transcrição
17.
Crit Rev Biochem Mol Biol ; 53(5): 515-534, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30238821

RESUMO

Mutations in PINK1 cause early-onset recessive Parkinson's disease. This gene encodes a protein kinase implicated in mitochondrial quality control via ubiquitin phosphorylation and activation of the E3 ubiquitin ligase Parkin. Here, we review and analyze functional features emerging from recent crystallographic, nuclear magnetic resonance (NMR) and mass spectrometry studies of PINK1. We compare the apo and ubiquitin-bound PINK1 structures and reveal an allosteric switch, regulated by autophosphorylation, which modulates substrate recognition. We critically assess the conformational changes taking place in ubiquitin and the Parkin ubiquitin-like domain in relation to its binding to PINK1. Finally, we discuss the implications of these biophysical findings in our understanding of the role of PINK1 in mitochondrial function, and analyze the potential for structure-based drug design.


Assuntos
Proteínas Quinases/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Mitofagia , Modelos Moleculares , Doença de Parkinson/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica , Proteínas Quinases/química , Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
18.
EMBO Rep ; 19(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475881

RESUMO

Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Ratos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/genética , Ubiquitinação , Domínios de Homologia de src
19.
Nature ; 510(7503): 162-6, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24784582

RESUMO

PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7∼ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.


Assuntos
Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Ativação Enzimática , Fibroblastos , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/metabolismo , Mutação/genética , Doença de Parkinson , Fosforilação , Fosfosserina/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
20.
Cell Mol Life Sci ; 76(23): 4589-4611, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31254044

RESUMO

Parkinson's disease (PD) is a degenerative movement disorder resulting from the loss of specific neuron types in the midbrain. Early environmental and pathophysiological studies implicated mitochondrial damage and protein aggregation as the main causes of PD. These findings are now vindicated by the characterization of more than 20 genes implicated in rare familial forms of the disease. In particular, two proteins encoded by the Parkin and PINK1 genes, whose mutations cause early-onset autosomal recessive PD, function together in a mitochondrial quality control pathway. In this review, we will describe recent development in our understanding of their mechanisms of action, structure, and function. We explain how PINK1 acts as a mitochondrial damage sensor via the regulated proteolysis of its N-terminus and the phosphorylation of ubiquitin tethered to outer mitochondrial membrane proteins. In turn, phospho-ubiquitin recruits and activates Parkin via conformational changes that increase its ubiquitin ligase activity. We then describe how the formation of polyubiquitin chains on mitochondria triggers the recruitment of the autophagy machinery or the formation of mitochondria-derived vesicles. Finally, we discuss the evidence for the involvement of these mechanisms in physiological processes such as immunity and inflammation, as well as the links to other PD genes.


Assuntos
Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Autofagia , Humanos , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mitofagia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/química , Proteínas Quinases/genética , Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa