Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1837(10): 1739-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25038514

RESUMO

Limited uncoupling of oxidative phosphorylation is known to be beneficial in various laboratory models of diseases. The search for cationic uncouplers is promising as their protonophorous effect is self-limiting because these uncouplers lower membrane potential which is the driving force for their accumulation in mitochondria. In this work, the penetrating cation Rhodamine 19 butyl ester (C4R1) was found to decrease membrane potential and to stimulate respiration of mitochondria, appearing to be a stronger uncoupler than its more hydrophobic analog Rhodamine 19 dodecyl ester (C12R1). Surprisingly, C12R1 increased H(+) conductance of artificial bilayer lipid membranes or induced mitochondria swelling in potassium acetate with valinomycin at concentrations lower than C4R1. This paradox might be explained by involvement of mitochondrial proteins in the uncoupling action of C4R1. In experiments with HeLa cells, C4R1 rapidly and selectively accumulated in mitochondria and stimulated oligomycin-sensitive respiration as a mild uncoupler. C4R1 was effective in preventing oxidative stress induced by brain ischemia and reperfusion in rats: it suppressed stroke-induced brain swelling and prevented the decline in neurological status more effectively than C12R1. Thus, C4R1 seems to be a promising example of a mild uncoupler efficient in treatment of brain pathologies related to oxidative stress.


Assuntos
Mitocôndrias Hepáticas/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Rodaminas/farmacologia , Desacopladores/farmacologia , Animais , Células HeLa , Humanos , Bicamadas Lipídicas , Ratos , Rodaminas/química
2.
Biochim Biophys Acta ; 1797(6-7): 878-89, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20307489

RESUMO

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Assuntos
Antioxidantes/farmacologia , Cardiolipinas/metabolismo , Ácidos Graxos/metabolismo , Plastoquinona/análogos & derivados , Animais , Antioxidantes/química , Cardiolipinas/química , Desenho de Fármacos , Humanos , Técnicas In Vitro , Cinética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Oxirredução , Plastoquinona/química , Plastoquinona/farmacologia , Ratos
3.
J Bioenerg Biomembr ; 41(3): 239-49, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19609656

RESUMO

In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca(2+) uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca(2+) transport system (Bazhenova et al. J Biol Chem 273:4372-4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96-100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352-1356, 2000; Deryabina et al. J Biol Chem 276:47801-47806, 2001) were very resistant to Ca(2+) overload. However, exposure of yeast mitochondria to 50-100 microM Ca(2+) in the presence of the Ca(2+) ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca(2+)/nH(+)-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca(2+)- ETH129-induced activation of the Ca(2+)/H(+)-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca(2+) overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319-331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37-51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca(2+) uptake and is differently regulated compared to the mPTP of animal mitochondria.


Assuntos
Dipodascus/citologia , Potenciais da Membrana/fisiologia , Membranas Mitocondriais/fisiologia , Yarrowia/citologia , Alameticina/farmacologia , Antiporters/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Transporte de Cátions/metabolismo , Cicloexanos/farmacologia , Ionóforos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Permeabilidade
4.
FEBS Lett ; 587(13): 2018-24, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23665033

RESUMO

Since the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies. This review summarizes new data on the antioxidant and some other properties of membrane-penetrating cationic compounds where 2-demethylplastoquinone substitutes for plastoquinone. It was found that such a substitution significantly increases a window between anti- and prooxidant concentrations of the conjugates. Like the original plastoquinone derivatives, the novel compounds are easily reduced by the respiratory chain, penetrate through model and natural membranes, specifically accumulate in mitochondria in an electrophoretic fashion, and strongly inhibit H2O2-induced apoptosis at pico- and nanomolar concentrations in cell cultures. At present, cationic demethylplastoquinone derivatives appear to be the most promising mitochondria-targeted drugs of the quinone series.


Assuntos
Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Animais , Antioxidantes/metabolismo , Benzoquinonas/metabolismo , Benzoquinonas/farmacologia , Cátions , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Plastoquinona/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa