Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000328

RESUMO

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Assuntos
COVID-19 , Pulmão , Infecções por Orthomyxoviridae , Animais , Antivirais/farmacologia , COVID-19/patologia , Fluoxetina/farmacologia , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Interferons , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa