Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(8): 3103-15, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21177652

RESUMO

The molecular motor protein CHD1 has been implicated in the regulation of transcription and in the transcription-independent genome-wide incorporation of H3.3 into paternal chromatin in Drosophila melanogaster. A key feature of CHD1 is the presence of two chromodomains, which can bind to histone H3 methylated at lysine 4 and thus might serve to recruit and/or maintain CHD1 at the chromatin. Here, we describe genetic and biochemical approaches to the study of the Drosophila CHD1 chromodomains. We found that overall localization of CHD1 on polytene chromosomes does not appreciably change in chromodomain-mutant flies. In contrast, the chromodomains are important for transcription-independent activities of CHD1 during early embryonic development as well as for transcriptional regulation of several heat shock genes. However, neither CHD1 nor its chromodomains are needed for RNA polymerase II localization and H3K4 methylation but loss of CHD1 decreases transcription-induced histone eviction at the Hsp70 gene in vivo. Chromodomain mutations negatively affect the chromatin assembly activities of CHD1 in vitro, and they appear to be involved in linking the ATP-dependent motor to the chromatin assembly function of CHD1.


Assuntos
Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina , Cromossomos/química , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Fertilidade , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Histonas/metabolismo , Metilação , Mutação , Estrutura Terciária de Proteína , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
2.
Nucleic Acids Res ; 31(14): 3971-81, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12853613

RESUMO

Acetylation is the most prominent modification on core histones that strongly affects nuclear processes such as DNA replication, DNA repair and transcription. Enzymes responsible for the dynamic equilibrium of histone acetylation are histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this paper we describe the identification of novel HDACs from the filamentous fungi Aspergillus nidulans and the maize pathogen Cochliobolus carbonum. Two of the enzymes are homologs of Saccharomyces cerevisiae HOS3, an enzyme that has not been identified outside of the established yeast systems until now. One of these homologs, HosB, showed intrinsic HDAC activity and remarkable resistance against HDAC inhibitors like trichostatin A (TSA) when recombinant expressed in an Escherichia coli host system. Phylo genetic analysis revealed that HosB, together with other fungal HOS3 orthologs, is a member of a separate group within the classical HDACs. Immunological investigations with partially purified HDAC activities of Aspergillus showed that all classical enzymes are part of high molecular weight complexes and that a TSA sensitive class 2 HDAC constitutes the major part of total HDAC activity of the fungus. However, further biochemical analysis also revealed an NAD(+)-dependent activity that could be separated from the other activities by different types of chromatography and obviously represents an enzyme of the sirtuin class.


Assuntos
Ascomicetos/genética , Aspergillus nidulans/genética , Histona Desacetilases/genética , Sequência de Aminoácidos , Ascomicetos/enzimologia , Aspergillus nidulans/enzimologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Testes de Precipitina , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
3.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803184

RESUMO

Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. IMPORTANCE: This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.


Assuntos
Aspergillus fumigatus/enzimologia , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Viabilidade Microbiana , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/fisiologia , Ácidos Hidroxâmicos/farmacologia
4.
Mol Biol Cell ; 21(2): 345-53, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19940017

RESUMO

Acetylation of the N-terminal tails of core histones is an important regulatory mechanism in eukaryotic organisms. In filamentous fungi, little is known about the enzymes that modify histone tails. However, it is increasingly evident that histone deacetylases and histone acetyltransferases are critical factors for the regulation of genes involved in fungal pathogenicity, stress response, and production of secondary metabolites such as antibiotics or fungal toxins. Here, we show that depletion of RpdA, an RPD3-type histone deacetylase of Aspergillus nidulans, leads to a pronounced reduction of growth and sporulation of the fungus. We demonstrate that a so far unnoticed motif in the C terminus of fungal RpdA histone deacetylases is required for the catalytic activity of the enzyme and consequently is essential for the viability of A. nidulans. Moreover, we provide evidence that this motif is also crucial for the survival of other, if not all, filamentous fungi, including pathogens such as Aspergillus fumigatus or Cochliobolus carbonum. Thus, the extended C terminus of RpdA-type enzymes represents a promising target for fungal-specific histone deacetylase-inhibitors that may have potential as novel antifungal compounds with medical and agricultural applications.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Acetilação , Motivos de Aminoácidos , Sequência de Aminoácidos , Aspergillus fumigatus/enzimologia , Aspergillus nidulans/citologia , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genótipo , Histonas/metabolismo , Dados de Sequência Molecular , Fenótipo , Relação Estrutura-Atividade , Transcrição Gênica
5.
Eukaryot Cell ; 6(9): 1656-64, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17616629

RESUMO

Bioactive small molecules are critical in Aspergillus species during their development and interaction with other organisms. Genes dedicated to their production are encoded in clusters that can be located throughout the genome. We show that deletion of hdaA, encoding an Aspergillus nidulans histone deacetylase (HDAC), causes transcriptional activation of two telomere-proximal gene clusters--and subsequent increased levels of the corresponding molecules (toxin and antibiotic)--but not of a telomere-distal cluster. Introduction of two additional HDAC mutant alleles in a DeltahdaA background had minimal effects on expression of the two HdaA-regulated clusters. Treatment of other fungal genera with HDAC inhibitors resulted in overproduction of several metabolites, suggesting a conserved mechanism of HDAC repression of some secondary-metabolite gene clusters. Chromatin regulation of small-molecule gene clusters may enable filamentous fungi to successfully exploit environmental resources by modifying chemical diversity.


Assuntos
Aspergillus nidulans/química , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Família Multigênica/genética , Alelos , Aspergillus nidulans/genética , Cromatina/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Deleção de Genes , Expressão Gênica , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Família Multigênica/fisiologia , Estresse Oxidativo/genética
6.
Science ; 317(5841): 1087-90, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17717186

RESUMO

The organization of chromatin affects all aspects of nuclear DNA metabolism in eukaryotes. H3.3 is an evolutionarily conserved histone variant and a key substrate for replication-independent chromatin assembly. Elimination of chromatin remodeling factor CHD1 in Drosophila embryos abolishes incorporation of H3.3 into the male pronucleus, renders the paternal genome unable to participate in zygotic mitoses, and leads to the development of haploid embryos. Furthermore, CHD1, but not ISWI, interacts with HIRA in cytoplasmic extracts. Our findings establish CHD1 as a major factor in replacement histone metabolism in the nucleus and reveal a critical role for CHD1 in the earliest developmental instances of genome-scale, replication-independent nucleosome assembly. Furthermore, our results point to the general requirement of adenosine triphosphate (ATP)-utilizing motor proteins for histone deposition in vivo.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Feminino , Haploidia , Chaperonas de Histonas , Masculino , Mutação , Nucleossomos/metabolismo , Protaminas/metabolismo , Espermatozoides/fisiologia , Fatores de Transcrição/genética , Transgenes
7.
Eukaryot Cell ; 4(10): 1736-45, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16215180

RESUMO

Histone deacetylases (HDACs) catalyze the removal of acetyl groups from the epsilon-amino group of distinct lysine residues in the amino-terminal tail of core histones. Since the acetylation status of core histones plays a crucial role in fundamental processes in eukaryotic organisms, such as replication and regulation of transcription, recent research has focused on the enzymes responsible for the acetylation/deacetylation of core histones. Very recently, we showed that HdaA, a member of the Saccharomyces cerevisiae HDA1-type histone deacetylases, is a substantial contributor to total HDAC activity in the filamentous fungus Aspergillus nidulans. Now we demonstrate that deletion of the hdaA gene indeed results in the loss of the main activity peak and in a dramatic reduction of total HDAC activity. In contrast to its orthologs in yeast and higher eukaryotes, HdaA has strong intrinsic activity as a protein monomer when expressed as a recombinant protein in a prokaryotic expression system. In vivo, HdaA is involved in the regulation of enzymes which are of vital importance for the cellular antioxidant response in A. nidulans. Consequently, deltahdaA strains exhibit significantly reduced growth on substrates whose catabolism generates molecules responsible for oxidative stress conditions in the fungus. Our analysis revealed that reduced expression of the fungal catalase CatB is jointly responsible for the significant growth reduction of the hdaA mutant strains.


Assuntos
Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Histona Desacetilases/metabolismo , Estresse Oxidativo , Aspergillus nidulans/citologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Catalase/metabolismo , Proteínas Fúngicas/genética , Histona Desacetilases/genética , Peróxido de Hidrogênio/metabolismo , Hifas/metabolismo , Hifas/ultraestrutura , Mutação , Oxidantes/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa