Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(5): 104611, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931394

RESUMO

Adipose tissue plays a crucial role in maintaining metabolic homeostasis by storing lipids and glucose from circulation as intracellular fat. As peripheral tissues like adipose tissue become insulin resistant, decompensation of blood glucose levels occurs causing type 2 diabetes (T2D). Currently, modulating the glycocalyx, a layer of cell-surface glycans, is an underexplored pharmacological treatment strategy to improve glucose homeostasis in T2D patients. Here, we show a novel role for cell-surface heparan sulfate (HS) in establishing glucose uptake capacity and metabolic utilization in differentiated adipocytes. Using a combination of chemical and genetic interventions, we identified that HS modulates this metabolic phenotype by attenuating levels of Wnt signaling during adipogenesis. By engineering, the glycocalyx of pre-adipocytes with exogenous synthetic HS mimetics, we were able to enhance glucose clearance capacity after differentiation through modulation of Wnt ligand availability. These findings establish the cellular glycocalyx as a possible new target for therapeutic intervention in T2D patients by enhancing glucose clearance capacity independent of insulin secretion.


Assuntos
Adipogenia , Diabetes Mellitus Tipo 2 , Humanos , Adipogenia/genética , Glicocálix/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Heparitina Sulfato , Glucose/metabolismo
2.
Bioconjug Chem ; 30(3): 833-840, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30668905

RESUMO

Heparan sulfate glycosaminoglycans (HS GAGs) attached to proteoglycans harbor high affinity binding sites for various growth factors (GFs) and direct their organization and activity across the cell-matrix interface. Here, we describe a mild and efficient method for generating HS-protein conjugates. The two-step process utilizes a "copper-free click" coupling between differentially sulfated heparinoids primed at their reducing end with an azide handle and a bovine serum albumin protein modified with complementary cyclooctyne functionality. When adsorbed on tissue culture substrates, the glycoconjugates served as extracellular matrix proteoglycan models with the ability to sequester FGF2 and influence mesenchymal stem cell proliferation based on the structure of their HS GAG component.


Assuntos
Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Heparinoides/química , Células-Tronco/metabolismo , Animais , Glicosaminoglicanos/química
3.
J Am Chem Soc ; 136(30): 10565-8, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25019314

RESUMO

Growth factor (GF) signaling is a key determinant of stem cell fate. Interactions of GFs with their receptors are often mediated by heparan sulfate proteoglycans (HSPGs). Here, we report a cell surface engineering strategy that exploits the function of HSPGs to promote differentiation in embryonic stem cells (ESCs). We have generated synthetic neoproteoglycans (neoPGs) with affinity for the fibroblast growth factor 2 (FGF2) and introduced them into plasma membranes of ESCs deficient in HS biosynthesis. There, the neoPGs assumed the function of native HSPGs, rescued FGF2-mediated kinase activity, and promoted neural specification. This glycocalyx remodeling strategy is versatile and may be applicable to other types of differentiation.


Assuntos
Células-Tronco Embrionárias/citologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glicocálix/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos
4.
Adv Healthc Mater ; 11(4): e2101232, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34541824

RESUMO

Extracellular glycans, such as glycosaminoglycans (GAGs), provide an essential regulatory component during the development and maintenance of tissues. GAGs, which harbor binding sites for a range of growth factors (GFs) and other morphogens, help establish gradients of these molecules in the extracellular matrix (ECM) and promote the formation of active signaling complexes when presented at the cell surface. As such, GAGs have been pursued as biologically active components for the development of biomaterials for cell-based regenerative therapies. However, their structural complexity and compositional heterogeneity make establishing structure-function relationships for this class of glycans difficult. Here, a stem cell array platform is described, in which chemically modified heparan sulfate (HS) GAG polysaccharides are conjugated to a gelatin matrix and introduced into a polyacrylamide hydrogel network. This array allowed for direct analysis of HS contributions to the signaling via the FGF2-dependent mitogen activated protein kinase (MAPK) pathway in mouse embryonic stem cells. With the recent emergence of powerful synthetic and recombinant technologies to produce well-defined GAG structures, a platform for analyzing both growth factor binding and signaling in response to the presence of these biomolecules will provide a powerful tool for integrating glycans into biomaterials to advance their biological properties and applications.


Assuntos
Glicosaminoglicanos , Heparitina Sulfato , Animais , Matriz Extracelular/metabolismo , Glicosaminoglicanos/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Células-Tronco/metabolismo
5.
Methods Mol Biol ; 1367: 207-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26537476

RESUMO

The cellular glycocalyx controls many of the crucial signaling pathways involved in cellular development. Synthetic materials that can mimic the multivalency and three-dimensional architecture of native glycans serve as important tools for deciphering and exploiting the roles of these glycans. Here we describe a chemical approach for the engineering of growth-factor interactions at the surfaces of stem cells using synthetic glycomimetic materials, with an eye towards promoting their commitment towards specific cell lineages with therapeutic potential.


Assuntos
Materiais Biomiméticos/química , Glicocálix/química , Glicoconjugados/química , Polímeros/química , Células-Tronco/química , Animais , Camundongos , Proteoglicanas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa