Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Mol Pharmacol ; 100(5): 428-455, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452975

RESUMO

Vascular pathology is increased in diabetes because of reactive-oxygen-species (ROS)-induced endothelial cell damage. We found that in vitro and in a streptozotocin diabetes model in vivo, metformin at diabetes-therapeutic concentrations (1-50 µM) protects tissue-intact and cultured vascular endothelial cells from hyperglycemia/ROS-induced dysfunction typified by reduced agonist-stimulated endothelium-dependent, nitric oxide-mediated vasorelaxation in response to muscarinic or proteinase-activated-receptor 2 agonists. Metformin not only attenuated hyperglycemia-induced ROS production in aorta-derived endothelial cell cultures but also prevented hyperglycemia-induced endothelial mitochondrial dysfunction (reduced oxygen consumption rate). These endothelium-protective effects of metformin were absent in orphan-nuclear-receptor Nr4a1-null murine aorta tissues in accord with our observing a direct metformin-Nr4a1 interaction. Using in silico modeling of metformin-NR4A1 interactions, Nr4a1-mutagenesis, and a transfected human embryonic kidney 293T cell functional assay for metformin-activated Nr4a1, we identified two Nr4a1 prolines, P505/P549 (mouse sequences corresponding to human P501/P546), as key residues for enabling metformin to affect mitochondrial function. Our data indicate a critical role for Nr4a1 in metformin's endothelial-protective effects observed at micromolar concentrations, which activate AMPKinase but do not affect mitochondrial complex-I or complex-III oxygen consumption rates, as does 0.5 mM metformin. Thus, therapeutic metformin concentrations requiring the expression of Nr4a1 protect the vasculature from hyperglycemia-induced dysfunction in addition to metformin's action to enhance insulin action in patients with diabetes. SIGNIFICANCE STATEMENT: Metformin improves diabetic vasodilator function, having cardioprotective effects beyond glycemic control, but its mechanism to do so is unknown. We found that metformin at therapeutic concentrations (1-50µM) prevents hyperglycemia-induced endothelial dysfunction by attenuating reactive oxygen species-induced damage, whereas high metformin (>250 µM) impairs vascular function. However, metformin's action requires the expression of the orphan nuclear receptor NR4A1/Nur77. Our data reveal a novel mechanism whereby metformin preserves diabetic vascular endothelial function, with implications for developing new metformin-related therapeutic agents.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Cultura de Órgãos , Estresse Oxidativo/fisiologia , Vasodilatadores/farmacologia
2.
Can J Physiol Pharmacol ; 98(7): 415-430, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32150686

RESUMO

Over the past 66 years, our knowledge of the role of the endothelium in the regulation of cardiovascular function and dysfunction has advanced from the assumption that it is a single layer of cells that serves as a barrier between the blood stream and vascular smooth muscle to an understanding of its role as an essential endocrine-like organ. In terms of historical contributions, we pay particular credit to (1) the Canadian scientist Dr. Rudolf Altschul who, based on pathological changes in the appearance of the endothelium, advanced the argument in 1954 that "one is only as old as one's endothelium" and (2) the American scientist Dr. Robert Furchgott, a 1998 Nobel Prize winner in Physiology or Medicine, who identified the importance of the endothelium in the regulation of blood flow. This review provides a brief history of how our knowledge of endothelial function has advanced and now recognize that the endothelium produces a plethora of signaling molecules possessing paracrine, autocrine, and, arguably, systemic hormone functions. In addition, the endothelium is a therapeutic target for the anti-diabetic drugs metformin, glucagon-like peptide I (GLP-1) receptor agonists, and inhibitors of the sodium-glucose cotransporter 2 (SGLT2) that offset the vascular disease associated with diabetes.


Assuntos
Angiopatias Diabéticas/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hipoglicemiantes/farmacologia , Circulação Sanguínea/efeitos dos fármacos , Circulação Sanguínea/fisiologia , Angiopatias Diabéticas/história , Angiopatias Diabéticas/fisiopatologia , História do Século XX , Humanos , Hipoglicemiantes/uso terapêutico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Fisiologia/história , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
3.
Drug Dev Res ; 78(1): 3-23, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27767221

RESUMO

Preclinical Research With the almost global availability of the Internet comes the expectation of universal accessibility to knowledge, including scientific knowledge-particularly that generated by public funding. Currently this is not the case. In this Commentary we discuss access to this knowledge, the politics that govern peer review and publication, and the role of this knowledge as a public good in medicine. Gutenberg's invention of the printing press in 1440 opened an avenue for the distribution of scholarly information to the entire world. The scientific literature first appeared in 1665 with Le Journal des Sçavans followed in the same year by Philosophical Transactions. Today there are more than 5000 scientific publishing companies, 25,000 journals and 1.5 million articles published/year generating revenue of $25 billion USD. The European Union and the Organization for Economic Cooperation and Development have argued for open access (OA) to scientific data for all publicly funded research by 2020 with a similar initiative in the USA via the Fair Access to Science and Technology Research Act (FASTR). However, OA to published science is but one step in this odyssey. If the products of science are not openly available then it can be argued that the norms of science as defined by Merton including "universalism" and "communalism" have yet to be accomplished. Nowhere is this more apparent than in the delivery of medicines to the poor and for rare diseases, the attempts to privatize human genetic information and, not least, dealing with the challenges of antibiotic resistance and new disease pandemics exacerbated by climate change. Drug Dev Res 78 : 3-23, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Acesso à Informação , Publicações Periódicas como Assunto , Difusão de Inovações , Humanos , Internet
4.
J Pharmacol Exp Ther ; 356(2): 314-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26582729

RESUMO

Impaired angiogenesis is a prominent risk factor that contributes to the development of diabetes-associated cardiovascular disease. MicroRNAs (miRNAs), small noncoding RNAs, are implicated as important regulators of vascular function, including endothelial cell differentiation, proliferation, and angiogenesis. In silico analysis and in vitro studies indicate that silent information regulator 1 (SIRT1) is a potential target for endothelial cell-specific miRNAs. In this study, we investigated the molecular crosstalk between miR-34a, the protein product of SIRT1 (sirtuin1), and the antidiabetic drug, metformin, in hyperglycemia-mediated impaired angiogenesis in mouse microvascular endothelial cells (MMECs). MMECs were cultured, transfected with either a miR-34a inhibitor or mimic in normal glucose (11 mM) or high glucose (HG, 40 mM) in the presence or absence of metformin. The expression of miR-34a, sirtuin1, and their signaling targets was evaluated. miR-34a expression is upregulated in a hyperglycemic milieu and parallels changes in the expression of sirtuin1, post-translational modification of endothelial nitric oxide synthase (phospho/acetylation), as well as an impairment in angiogenesis. The presence of metformin, or the inhibition of miR-34a using an anti-miR-34a inhibitor, increases the expression of sirtuin1 and attenuates the impairment in angiogenesis in HG-exposed MMECs. In contrast, overexpression of a miR-34a mimic prevents metformin-mediated protection. These data indicate that miR-34a, via the regulation of sirtuin1 expression, has an anti-angiogenic action in MMECs, which can be modulated by metformin. In summary, miR-34a represents both a target whereby metformin mediates its vasculoprotective actions and also a potential therapeutic target for the prevention/treatment of diabetic vascular disease.


Assuntos
Células Endoteliais/metabolismo , Hiperglicemia/metabolismo , Metformina/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Sirtuína 1/metabolismo , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Resultado do Tratamento
5.
J Cardiovasc Pharmacol ; 65(5): 419-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25384197

RESUMO

The worldwide increase in the prevalence of obesity and type 2 diabetes and the associated elevated risk of cardiovascular disease (CVD) has emphasized the need to seek new therapeutic targets to offset the negative impact on human health outcomes. In this regards, microRNAs (miRNAs), a class of small noncoding RNAs that mediate posttranscriptional gene silencing, have received considerable interest. miRNAs repress gene expression by their ability to pair with target sequences in the 3' untranslated region of the messenger RNA. miRNAs play a crucial role in the biogenesis and function of the cardiovascular system and are implicated as dynamic regulators of cardiac and vascular signaling and pathophysiology. Numerous miRNAs have been identified as novel biomarkers and potential therapeutic targets for CVD. In this review, we discuss the contribution of miRNAs to the regulation of CVD, their role in macrovascular/microvascular (dys)function, their potential as important biomarkers for the early detection of CVD, and, finally, as therapeutic targets.


Assuntos
Doenças Cardiovasculares/genética , MicroRNAs/genética , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , MicroRNAs/metabolismo , Valor Preditivo dos Testes , Prognóstico
6.
Med Princ Pract ; 24(5): 401-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26021280

RESUMO

The anti-diabetic and oral hypoglycaemic agent metformin, first used clinically in 1958, is today the first choice or 'gold standard' drug for the treatment of type 2 diabetes and polycystic ovary disease. Of particular importance for the treatment of diabetes, metformin affords protection against diabetes-induced vascular disease. In addition, retrospective analyses suggest that treatment with metformin provides therapeutic benefits to patients with several forms of cancer. Despite almost 60 years of clinical use, the precise cellular mode(s) of action of metformin remains controversial. A direct or indirect role of adenosine monophosphate (AMP)-activated protein kinase (AMPK), the fuel gauge of the cell, has been inferred in many studies, with evidence that activation of AMPK may result from a mild inhibitory effect of metformin on mitochondrial complex 1, which in turn would raise AMP and activate AMPK. Discrepancies, however, between the concentrations of metformin used in in vitro studies versus therapeutic levels suggest that caution should be applied before extending inferences derived from cell-based studies to therapeutic benefits seen in patients. Conceivably, the effects, or some of them, may be at least partially independent of AMPK and/or mitochondrial respiration and reflect a direct effect of either metformin or a minor and, as yet, unidentified putative metabolite of metformin on a target protein(s)/signalling cascade. In this review, we critically evaluate the data from studies that have investigated the pharmacokinetic properties and the cellular and clinical basis for the oral hypoglycaemic, insulin-sensitising and vascular protective effects of metformin.


Assuntos
Proteínas Quinases Ativadas por AMP/biossíntese , Endotélio/metabolismo , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Doenças Vasculares/tratamento farmacológico , Adenilil Ciclases/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Relação Dose-Resposta a Droga , Gluconeogênese/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Metformina/farmacocinética , Mitocôndrias/metabolismo , Neoplasias/fisiopatologia , Proteína Quinase C/metabolismo , Estudos Retrospectivos , Transdução de Sinais , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/biossíntese , Doenças Vasculares/fisiopatologia
7.
Vasc Health Risk Manag ; 20: 255-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919471

RESUMO

Metformin is an orally effective anti-hyperglycemic drug that despite being introduced over 60 years ago is still utilized by an estimated 120 to 150 million people worldwide for the treatment of type 2 diabetes (T2D). Metformin is used off-label for the treatment of polycystic ovary syndrome (PCOS) and for pre-diabetes and weight loss. Metformin is a safe, inexpensive drug with side effects mostly limited to gastrointestinal issues. Prospective clinical data from the United Kingdom Prospective Diabetes Study (UKPDS), completed in 1998, demonstrated that metformin not only has excellent therapeutic efficacy as an anti-diabetes drug but also that good glycemic control reduced the risk of micro- and macro-vascular complications, especially in obese patients and thereby reduced the risk of diabetes-associated cardiovascular disease (CVD). Based on a long history of clinical use and an excellent safety record metformin has been investigated to be repurposed for numerous other diseases including as an anti-aging agent, Alzheimer's disease and other dementias, cancer, COVID-19 and also atrial fibrillation (AF). AF is the most frequently diagnosed cardiac arrythmia and its prevalence is increasing globally as the population ages. The argument for repurposing metformin for AF is based on a combination of retrospective clinical data and in vivo and in vitro pre-clinical laboratory studies. In this review, we critically evaluate the evidence that metformin has cardioprotective actions and assess whether the clinical and pre-clinical evidence support the use of metformin to reduce the risk and treat AF.


Assuntos
Fibrilação Atrial , Reposicionamento de Medicamentos , Hipoglicemiantes , Metformina , Humanos , Metformina/uso terapêutico , Metformina/efeitos adversos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/diagnóstico , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Animais , COVID-19/complicações , Antiarrítmicos/uso terapêutico , Antiarrítmicos/efeitos adversos , Resultado do Tratamento , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico
8.
Biomed Pharmacother ; 164: 114911, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224753

RESUMO

Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.


Assuntos
Metformina , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Desoxiglucose/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Serina-Treonina Quinases TOR , Glucose/metabolismo
9.
Curr Med Chem ; 30(35): 3955-3978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35909294

RESUMO

Metformin has been used as an oral anti-hyperglycaemic drug since the late 1950s; however, following the release in 1998 of the findings of the 20-year United Kingdom Prospective Diabetes Study (UKPDS), metformin use rapidly increased and today is the first-choice anti-hyperglycaemic drug for patients with type 2 diabetes (T2D). Metformin is in daily use by an estimated 150 million people worldwide. Historically, the benefits of metformin as an anti-diabetic and cardiovascular-protective drug have been linked to effects in the liver, where it acts to inhibit gluconeogenesis and lipogenesis, as well as reduce insulin resistance and enhance peripheral glucose utilization. However, direct protective effects on the endothelium and effects in the gut prior to metformin absorption are now recognized as important. In the gut, metformin modulates the glucagon-like peptide- 1 (GLP-1) - gut-brain axis and impacts the intestinal microbiota. As the apparent number of putative tissue and cellular targets for metformin has increased, so has the interest in re-purposing metformin to treat other diseases that include polycystic ovary syndrome (PCOS), cancer, neurodegenerative diseases, and COVID-19. Metformin is also being investigated as an anti-ageing drug. Of particular interest is whether metformin provides the same level of vascular protection in individuals other than those with T2D, including obese individuals with metabolic syndrome, or in the setting of vascular thromboinflammation caused by SARS-CoV-2. In this review, we critically evaluate the literature to highlight clinical settings in which metformin might be therapeutically repurposed for the prevention and treatment of vascular disease.


Assuntos
Reposicionamento de Medicamentos , Doenças Vasculares , Doenças Vasculares/tratamento farmacológico , Metformina/uso terapêutico , Humanos , Animais , Células Endoteliais/efeitos dos fármacos , Exercício Físico , Envelhecimento , COVID-19
10.
J Cardiovasc Pharmacol ; 59(5): 413-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22217882

RESUMO

The nature of the potassium channels involved in determining endothelium-derived hyperpolarizing factor-mediated relaxation was investigated in first-order small mesenteric arteries from male endothelial nitric oxide synthase (eNOS-/-)-knockout and control (+/+) mice. Acetylcholine-induced endothelium-dependent relaxation of small mesenteric arteries of eNOS-/- was resistant to N-nitro-L-arginine and indomethacin and the guanylyl cyclase inhibitor, 1H-(1,2,4) oxadiazolo (4,3-a) quinoxalin-1-one. Apamin and the combination of apamin and iberiotoxin or apamin and charybdotoxin induced a transient endothelium-dependent contraction of small mesenteric arteries from both eNOS-/- and +/+ mice. Acetylcholine-induced relaxation in eNOS-/- mice was unaffected by charybdotoxin or apamin alone but significantly inhibited by the combination of these agents. However, the combination of scyllatoxin and iberiotoxin did not mimic the inhibitory effect of the apamin/charybdotoxin combination. Tubocurarine alone completely blocked acetylcholine-induced relaxation in eNOS-/- mice. Single channel analysis of myocytes from small mesenteric arterioles revealed a large conductance calcium-activated potassium channel that was sensitive to iberiotoxin, charybdotoxin, and tetraethylammonium. Tubocurarine blocked this channel from the cytosolic side but not when applied extracellularly. Solutions of nitric oxide (NO) gas also relaxed small mesenteric arteries that had been contracted with cirazoline in a concentration-dependent manner, and the sensitivity to NO was reduced by iberiotoxin and the combination of apamin, scyllatoxin, or tubocurarine with charybdotoxin but not by apamin, charybdotoxin, scyllatoxin, or tubocurarine alone. These data indicate that acetylcholine-induced endothelium-derived hyperpolarizing factor-mediated relaxation in small mesenteric arteries from eNOS-/- involved the activation of tubocurarine and apamin-/charybdotoxin-sensitive K-channels. In eNOS+/+ mice, the acetylcholine-induced response was primarily mediated by NO and was sensitive to iberiotoxin and the combination of apamin and charybdotoxin.


Assuntos
Acetilcolina/farmacologia , Fatores Biológicos/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Canais de Potássio/metabolismo , Animais , Apamina/administração & dosagem , Apamina/farmacologia , Charibdotoxina/administração & dosagem , Charibdotoxina/farmacologia , Relação Dose-Resposta a Droga , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/farmacologia , Peptídeos/administração & dosagem , Peptídeos/farmacologia , Canais de Potássio/efeitos dos fármacos , Tubocurarina/administração & dosagem , Tubocurarina/farmacologia , Vasodilatação/efeitos dos fármacos
11.
Can J Physiol Pharmacol ; 90(6): 713-38, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22625870

RESUMO

The endothelium, although only a single layer of cells lining the vascular and lymphatic systems, contributes in multiple ways to vascular homeostasis. Subsequent to the 1980 report by Robert Furchgott and John Zawadzki, there has been a phenomenal increase in our knowledge concerning the signalling molecules and pathways that regulate endothelial - vascular smooth muscle communication. It is now recognised that the endothelium is not only an important source of nitric oxide (NO), but also numerous other signalling molecules, including the putative endothelium-derived hyperpolarizing factor (EDHF), prostacyclin (PGI(2)), and hydrogen peroxide (H(2)O(2)), which have both vasodilator and vasoconstrictor properties. In addition, the endothelium, either via transferred chemical mediators, such as NO and PGI(2), and (or) low-resistance electrical coupling through myoendothelial gap junctions, modulates flow-mediated vasodilatation as well as influencing mitogenic activity, platelet aggregation, and neutrophil adhesion. Disruption of endothelial function is an early indicator of the development of vascular disease, and thus an important area for further research and identification of potentially new therapeutic targets. This review focuses on the signalling pathways that regulate endothelial - vascular smooth muscle communication and the mechanisms that initiate endothelial dysfunction, particularly with respect to diabetic vascular disease.


Assuntos
Endotélio Vascular/fisiologia , Junções Comunicantes/fisiologia , Músculo Liso Vascular/fisiologia , Transdução de Sinais/fisiologia , Animais , Endotélio Vascular/metabolismo , Junções Comunicantes/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Doenças Vasculares/metabolismo , Doenças Vasculares/fisiopatologia
12.
Front Pharmacol ; 13: 982185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299902

RESUMO

Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.

13.
Vaccines (Basel) ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335086

RESUMO

The COVID-19 vaccines currently in use have undoubtedly played the most significant role in combating the SARS-CoV-2 virus and reducing disease severity and the risk of death among those affected, especially among those with pre-existing conditions, such as diabetes. The management of blood glucose levels has become critical in the context of the COVID-19 pandemic, where data show two- to threefold higher intensive care hospital admissions and more than twice the mortality rate among diabetic COVID-19 patients when compared with their nondiabetic counterparts. Furthermore, new-onset diabetes and severe hyperglycemia-related complications, such as hyperosmolar hyperglycemic syndrome (HHS) and diabetic ketoacidosis (DKA), were reported in COVID-19 patients. However, irrespective of the kind of vaccine and dosage number, possible vaccination-induced hyperglycemia and associated complications were reported among vaccinated individuals. The current article summarizes the available case reports on COVID-19 vaccination-induced hyperglycemia, the possible molecular mechanism responsible for this phenomenon, and the outstanding questions that need to be addressed and discusses the need to identify at-risk individuals and promote postvaccination monitoring/surveillance among at-risk individuals.

14.
Account Res ; 29(3): 133-164, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33787413

RESUMO

Journal impact factors, publication charges and assessment of quality and accuracy of scientific research are critical for researchers, managers, funders, policy makers, and society. Editors and publishers compete for impact factor rankings, to demonstrate how important their journals are, and researchers strive to publish in perceived top journals, despite high publication and access charges. This raises questions of how top journals are identified, whether assessments of impacts are accurate and whether high publication charges borne by the research community are justified, bearing in mind that they also collectively provide free peer-review to the publishers. Although traditional journals accelerated peer review and publication during the COVID-19 pandemic, preprint servers made a greater impact with over 30,000 open access articles becoming available and accelerating a trend already seen in other fields of research. We review and comment on the advantages and disadvantages of a range of assessment methods and the way in which they are used by researchers, managers, employers and publishers. We argue that new approaches to assessment are required to provide a realistic and comprehensive measure of the value of research and journals and we support open access publishing at a modest, affordable price to benefit research producers and consumers.


Assuntos
COVID-19 , Pandemias , Humanos , Fator de Impacto de Revistas , Revisão por Pares , SARS-CoV-2
15.
Front Cardiovasc Med ; 9: 847554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310996

RESUMO

Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.

16.
Metabolism ; 133: 155223, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640743

RESUMO

Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Mellitus Tipo 2 , Metformina , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Mamíferos/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Reprodutibilidade dos Testes
17.
Metabolites ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323692

RESUMO

Modern metabolomics platforms are able to identify many drug-related metabolites in blood samples. Applied to population-based biobank studies, the detection of drug metabolites can then be used as a proxy for medication use or serve as a validation tool for questionnaire-based health assessments. However, it is not clear how well detection of drug metabolites in blood samples matches information on self-reported medication provided by study participants. Here, we curate free-text responses to a drug-usage questionnaire from 6000 participants of the Qatar Biobank (QBB) using standardized WHO Anatomical Therapeutic Chemical (ATC) Classification System codes and compare the occurrence of these ATC terms to the detection of drug-related metabolites in matching blood plasma samples from 2807 QBB participants for which we collected non-targeted metabolomics data. We found that the detection of 22 drug-related metabolites significantly associated with the self-reported use of the corresponding medication. Good agreement of self-reported medication with non-targeted metabolomics was observed, with self-reported drugs and their metabolites being detected in a same blood sample in 79.4% of the cases. On the other hand, only 29.5% of detected drug metabolites matched to self-reported medication. Possible explanations for differences include under-reporting of over-the-counter medications from the study participants, such as paracetamol, misannotation of low abundance metabolites, such as metformin, and inability of the current methods to detect them. Taken together, our study provides a broad real-world view of what to expect from large non-targeted metabolomics measurements in population-based biobank studies and indicates areas where further improvements can be made.

18.
Front Endocrinol (Lausanne) ; 12: 718942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421827

RESUMO

The numerous beneficial health outcomes associated with the use of metformin to treat patients with type 2 diabetes (T2DM), together with data from pre-clinical studies in animals including the nematode, C. elegans, and mice have prompted investigations into whether metformin has therapeutic utility as an anti-aging drug that may also extend lifespan. Indeed, clinical trials, including the MILES (Metformin In Longevity Study) and TAME (Targeting Aging with Metformin), have been designed to assess the potential benefits of metformin as an anti-aging drug. Preliminary analysis of results from MILES indicate that metformin may induce anti-aging transcriptional changes; however it remains controversial as to whether metformin is protective in those subjects free of disease. Furthermore, despite clinical use for over 60 years as an anti-diabetic drug, the cellular mechanisms by which metformin exerts either its actions remain unclear. In this review, we have critically evaluated the literature that has investigated the effects of metformin on aging, healthspan and lifespan in humans as well as other species. In preparing this review, particular attention has been placed on the strength and reproducibility of data and quality of the study protocols with respect to the pharmacokinetic and pharmacodynamic properties of metformin. We conclude that despite data in support of anti-aging benefits, the evidence that metformin increases lifespan remains controversial. However, via its ability to reduce early mortality associated with various diseases, including diabetes, cardiovascular disease, cognitive decline and cancer, metformin can improve healthspan thereby extending the period of life spent in good health. Based on the available evidence we conclude that the beneficial effects of metformin on aging and healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function.


Assuntos
Envelhecimento/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Metformina/farmacologia , Envelhecimento/fisiologia , Animais , Caenorhabditis elegans , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Metformina/uso terapêutico , Camundongos , Estresse Oxidativo/efeitos dos fármacos
19.
Front Immunol ; 12: 631139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717166

RESUMO

COVID-19 emerged from China in December 2019 and during 2020 spread to every continent including Antarctica. The coronavirus, SARS-CoV-2, has been identified as the causative pathogen, and its spread has stretched the capacities of healthcare systems and negatively affected the global economy. This review provides an update on the virus, including the genome, the risks associated with the emergence of variants, mode of transmission, immune response, COVID-19 in children and the elderly, and advances made to contain, prevent and manage the disease. Although our knowledge of the mechanics of virus transmission and the immune response has been substantially demystified, concerns over reinfection, susceptibility of the elderly and whether asymptomatic children promote transmission remain unanswered. There are also uncertainties about the pathophysiology of COVID-19 and why there are variations in clinical presentations and why some patients suffer from long lasting symptoms-"the long haulers." To date, there are no significantly effective curative drugs for COVID-19, especially after failure of hydroxychloroquine trials to produce positive results. The RNA polymerase inhibitor, remdesivir, facilitates recovery of severely infected cases but, unlike the anti-inflammatory drug, dexamethasone, does not reduce mortality. However, vaccine development witnessed substantial progress with several being approved in countries around the globe.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Dexametasona/uso terapêutico , SARS-CoV-2/fisiologia , Monofosfato de Adenosina/uso terapêutico , Idoso , Alanina/uso terapêutico , Variação Antigênica , Doenças Assintomáticas , COVID-19/terapia , COVID-19/transmissão , Criança , Humanos , Imunidade , Pandemias/prevenção & controle , SARS-CoV-2/patogenicidade
20.
Pflugers Arch ; 459(6): 977-94, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20238124

RESUMO

Robert Furchgott's discovery of the obligatory role that the endothelium plays in the regulation of vascular tone has proved to be a major advance in terms of our understanding of the cellular basis of diabetic vascular disease. Endothelial dysfunction, as defined by a reduction in the vasodilatation response to an endothelium-dependent vasodilator (such as acetylcholine) or to flow-mediated vasodilatation, is an early indicator for the development of the micro- and macroangipathy that is associated with diabetes. In diabetes, hyperglycaemia plays a key role in the initiation and development of endothelial dysfunction; however, the cellular mechanisms involved as well as the importance of dyslipidaemia and co-morbidities such as hypertension and obesity remain incompletely understood. In this review, we discuss the mechanisms whereby hyperglycaemia, oxidative stress and dyslipidaemia can alter endothelial function and highlight their effects on endothelial nitric oxide synthase (eNOS), the endothelium-dependent hyperpolarising factor (EDHF) pathway(s), as well as on the role of endothelium-derived contracting factors (EDCFs) and adipocyte-derived vasoactive factors such as adipose-derived relaxing factor (ADRF).


Assuntos
Diabetes Mellitus/fisiopatologia , Endotélio Vascular/fisiopatologia , Animais , Fatores Biológicos/fisiologia , Biopterinas/análogos & derivados , Biopterinas/fisiologia , Glicemia/metabolismo , Cálcio/metabolismo , Comunicação Celular/fisiologia , Conexinas/fisiologia , Diabetes Mellitus/tratamento farmacológico , Angiopatias Diabéticas/fisiopatologia , Dislipidemias/complicações , Dislipidemias/fisiopatologia , Endotélio Vascular/citologia , Fatores Relaxantes Dependentes do Endotélio/metabolismo , Humanos , Hipercalcemia/fisiopatologia , Hiperglicemia/fisiopatologia , Hipertensão/complicações , Hipertensão/fisiopatologia , Óxido Nítrico Sintase Tipo III/biossíntese , Estresse Oxidativo/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa