Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nature ; 586(7831): 735-740, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879487

RESUMO

Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-ß is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-ß. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-ß. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idade de Início , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Domínio Catalítico , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Inflamação , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/metabolismo , Proteínas de Ligação a RNA/genética , Risco , Regulação para Cima
2.
Am J Respir Crit Care Med ; 209(6): 693-702, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38051928

RESUMO

Rationale: Respiratory viral infections can be transmitted from pregnant women to their offspring, but frequency, mechanisms, and postnatal outcomes remain unclear. Objectives: The aims of this prospective cohort study were to compare the frequencies of transplacental transmission of respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), analyze the concentrations of inflammatory mediators in maternal and fetal blood, and assess clinical consequences. Methods: We recruited pregnant women who developed upper respiratory infections or tested positive for SARS-CoV-2. Maternal and cord blood samples were collected at delivery. Study questionnaires and electronic medical records were used to document demographic and medical information. Measurements and Main Results: From October 2020 to June 2022, droplet digital PCR was used to test blood mononuclear cells from 103 mother-baby dyads. Twice more newborns in our sample were vertically infected with RSV compared with SARS-CoV-2 (25.2% [26 of 103] vs. 11.9% [12 of 101]; P = 0.019). Multiplex ELISA measured significantly increased concentrations of several inflammatory cytokines and chemokines in maternal and cord blood from newborns, with evidence of viral exposure in utero compared with control dyads. Prenatal infection was associated with significantly lower birth weight and postnatal weight growth. Conclusions: Data suggest a higher frequency of vertical transmission for RSV than SARS-CoV-2. Intrauterine exposure is associated with fetal inflammation driven by soluble inflammatory mediators, with expression profiles dependent on the virus type and affecting the rate of viral transmission. Virus-induced inflammation may have pathological consequences already in the first days of life, as shown by its effects on birth weight and postnatal weight growth.


Assuntos
Complicações Infecciosas na Gravidez , Vírus Sincicial Respiratório Humano , Gravidez , Recém-Nascido , Feminino , Humanos , Estudos Prospectivos , Peso ao Nascer , SARS-CoV-2 , Feto , Inflamação , Mediadores da Inflamação , Complicações Infecciosas na Gravidez/epidemiologia
3.
J Neurosci ; 38(4): 1000-1014, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29246926

RESUMO

Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-ß1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies.SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy.


Assuntos
Doenças Neurodegenerativas/imunologia , Linfócitos T Reguladores/imunologia , Vacinação/métodos , alfa-Sinucleína/imunologia , Animais , Feminino , Glucanos/administração & dosagem , Glucanos/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunossupressores/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Nanopartículas , Sirolimo/administração & dosagem , alfa-Sinucleína/administração & dosagem
4.
Neurobiol Dis ; 127: 163-177, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849508

RESUMO

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.


Assuntos
Doença por Corpos de Lewy/terapia , Degeneração Neural/terapia , alfa-Sinucleína/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptores de LDL/genética , Receptores de LDL/metabolismo , alfa-Sinucleína/genética
6.
Acta Neuropathol ; 136(1): 69-87, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934874

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of ß-amyloid (Aß) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Expansão das Repetições de DNA/genética , Doença de Pick/tratamento farmacológico , Anticorpos de Cadeia Única/uso terapêutico , Proteínas tau/genética , Proteínas tau/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteínas B/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Técnicas de Cocultura , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/patologia , Fosforilação , Doença de Pick/genética , Doença de Pick/patologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
7.
J Allergy Clin Immunol Glob ; 3(1): 100189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38268538

RESUMO

Background: Pregnancy is associated with a higher risk of adverse symptoms and outcomes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for both mother and neonate. Antibodies can provide protection against SARS-CoV-2 infection and are induced in pregnant women after vaccination or infection. Passive transfer of these antibodies from mother to fetus in utero may provide protection to the neonate against infection. However, it is unclear whether the magnitude or quality and kinetics of maternally derived fetal antibodies differs in the context of maternal infection or vaccination. Objective: We aimed to determine whether antibodies transferred from maternal to fetus differed in quality or quantity between infection- or vaccination-induced humoral immune responses. Methods: We evaluated 93 paired maternal and neonatal umbilical cord blood plasma samples collected between October 2020 and February 2022 from a birth cohort of pregnant women from New Orleans, Louisiana, with histories of SARS-CoV-2 infection and/or vaccination. Plasma was profiled for the levels of spike-specific antibodies and induction of antiviral humoral immune functions, including neutralization and Fc-mediated innate immune effector functions. Responses were compared between 4 groups according to maternal infection and vaccination. Results: We found that SARS-CoV-2 vaccination or infection during pregnancy increased the levels of antiviral antibodies compared to naive subjects. Vaccinated mothers and cord samples had the highest anti-spike antibody levels and antiviral function independent of the time of vaccination during pregnancy. Conclusions: These results show that the most effective passive transfer of functional antibodies against SARS-CoV-2 in utero is achieved through vaccination, highlighting the importance of vaccination in pregnant women.

8.
J Allergy Clin Immunol Glob ; 3(2): 100236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590754

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective: We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods: Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results: Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion: Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.

9.
ACS Nano ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595218

RESUMO

Interferon-gamma release assays (IGRAs) that measure pathogen-specific T-cell response rates can provide a more reliable estimate of protection than specific antibody levels but have limited potential for widespread use due to their workflow, personnel, and instrumentation demands. The major vaccines for SARS-CoV-2 have demonstrated substantial efficacy against all of its current variants, but approaches are needed to determine how these vaccines will perform against future variants, as they arise, to inform vaccine and public health policies. Here we describe a rapid, sensitive, nanolayer polylysine-integrated microfluidic chip IGRA read by a fluorescent microscope that has a 5 h sample-to-answer time and uses ∼25 µL of a fingerstick whole blood sample. Results from this assay correlated with those of a comparable clinical IGRA when used to evaluate the T-cell response to SARS-CoV-2 peptides in a population of vaccinated and/or infected individuals. Notably, this streamlined and inexpensive assay is suitable for high-throughput analyses in resource-limited settings for other infectious diseases.

10.
Vaccine ; 41(9): 1589-1601, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36732163

RESUMO

A key aspect to vaccine efficacy is formulation stability. Biochemical evaluations provide information on optimal compositions or thermal stability but are routinely validated by ex vivo analysis and not efficacy in animal models. Here we assessed formulations identified to improve or reduce stability of the mucosal adjuvant dmLT being investigated in polio and enterotoxigenic E. coli (ETEC) clinical vaccines. We observed biochemical changes to dmLT protein with formulation or thermal stress, including aggregation or subunit dissociation or alternatively resistance against these changes with specific buffer compositions. However, upon injection or mucosal vaccination with ETEC fimbriae adhesin proteins or inactivated polio virus, experimental findings indicated immunization route and co-administered antigen impacted vaccine immunogenicity more so than dmLT formulation stability (or instability). These results indicate the importance of both biochemical and vaccine-derived immunity assessment in formulation optimization. In addition, these studies have implications for use of dmLT in clinical settings and for delivery in resource poor settings.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Vacinas contra Escherichia coli , Poliomielite , Animais , Enterotoxinas , Excipientes , Escherichia coli , Infecções por Escherichia coli/prevenção & controle , Adjuvantes Imunológicos , Antígenos
11.
Mol Brain ; 15(1): 83, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224601

RESUMO

Alzheimer's disease (AD) manifested before age 65 is commonly referred to as early-onset AD (EOAD) (Reitz et al. Neurol Genet. 2020;6:e512). While the majority (> 90%) of EOAD cases are not caused by autosomal-dominant mutations in PSEN1, PSEN2, and APP, they do have a higher heritability (92-100%) than sporadic late-onset AD (LOAD, 70%) (Wingo et al. Arch Neurol. 2012;69:59-64, Fulton-Howard et al. Neurobiol Aging. 2021;99:101.e1-101.e9). Although the endpoint clinicopathological changes, i.e., Aß plaques, tau tangles, and cognitive decline, are common across EOAD and LOAD, the disease progression is highly heterogeneous (Neff et al. Sci Adv Am Assoc Adv Sci. 2021;7:eabb5398). This heterogeneity, leading to temporally distinct age at onset (AAO) and stages of cognitive decline, may be caused by myriad combinations of distinct disease-associated molecular mechanisms. We and others have used transcriptome profiling in AD patient-derived neuron models of autosomal-dominant EOAD and sporadic LOAD to identify disease endotypes (Caldwell et al. Sci Adv Am Assoc Adv Sci. 2020;6:eaba5933, Mertens et al. Cell Stem Cell. 2021;28:1533-1548.e6, Caldwell et al. Alzheimers Demen. 2022). Further, analyses of large postmortem brain cohorts demonstrate that only one-third of AD patients show hallmark disease endotypes like increased inflammation and decreased synaptic signaling (Neff et al. Sci Adv Am Assoc Adv Sci. 2021;7:eabb5398). Areas of the brain less affected by AD pathology at early disease stages-such as the primary visual cortex-exhibit similar transcriptomic dysregulation as those regions traditionally affected and, therefore, may offer a view into the molecular mechanisms of AD without the associated inflammatory changes and gliosis induced by pathology (Haroutunian et al. Neurobiol Aging. 2009;30:561-73). To this end, we analyzed AD patient samples from the primary visual cortex (19 EOAD, 20 LOAD) using transcriptomic signatures to identify patient clusters and disease endotypes. Interestingly, although the clusters showed distinct combinations and severity of endotypes, each patient cluster contained both EOAD and LOAD cases, suggesting that AAO may not directly correlate with the identity and severity of AD endotypes.


Assuntos
Doença de Alzheimer , Idade de Início , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
12.
Acta Neuropathol Commun ; 8(1): 123, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753049

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

13.
Acta Neuropathol Commun ; 5(1): 46, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28599681

RESUMO

Proteins implicated in neurodegenerative conditions such as Alzheimer's disease (AD) and Dementia with Lewy Bodies (DLB) have been identified in bodily fluids encased in extracellular vesicles called exosomes. Whether exosomes found in DLB patients can transmit pathology is not clear. In this study, exosomes were successfully harvested through ultracentrifugation from brain tissue from DLB and AD patients as well as non-diseased brain tissue. Exosomes extracted from brains diagnosed with either AD or DLB contained aggregate-prone proteins. Furthermore, injection of brain-derived exosomes from DLB patients into the brains of wild type mice induced α-synuclein (α-syn) aggregation. As assessed through immunofluorescent double labeling, α-syn aggregation was observed in MAP2+, Rab5+ neurons. Using a neuronal cell line, we also identified intracellular α-syn aggregation mediated by exosomes is dependent on recipient cell endocytosis. Together, these data suggest that exosomes from DLB patients are sufficient for seeding and propagating α-syn aggregation in vivo.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Exossomos/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular Tumoral , Endocitose/fisiologia , Exossomos/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neurônios/metabolismo , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Ratos
14.
Acta Neuropathol Commun ; 5(1): 2, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28057080

RESUMO

Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in oligodendrocytes. Therapeutic efforts to stop or delay the progression of MSA have yielded suboptimal results in clinical trials, and there are no efficient treatments currently available for MSA patients. We hypothesize that combining therapies targeting different aspects of the disease may lead to better clinical outcomes. To test this hypothesis, we combined the use of a single-chain antibody targeting α-syn modified for improved central nervous system penetration (CD5-D5) with an unconventional anti-inflammatory treatment (lenalidomide) in the myelin basic protein (MBP)-α-syn transgenic mouse model of MSA. While the use of either CD5-D5 or lenalidomide alone had positive effects on neuroinflammation and/or α-syn accumulation in this mouse model of MSA, the combination of both approaches yielded better results than each single treatment. The combined treatment reduced astrogliosis, microgliosis, soluble and aggregated α-syn levels, and partially improved behavioral deficits in MBP-α-syn transgenic mice. These effects were associated with an activation of the Akt signaling pathway, which may mediate cytoprotective effects downstream tumor necrosis factor alpha (TNFα). These results suggest that a strategic combination of treatments may improve the therapeutic outcome in trials for MSA and related neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Imunoterapia , Atrofia de Múltiplos Sistemas/terapia , Anticorpos de Cadeia Única/farmacologia , Talidomida/análogos & derivados , alfa-Sinucleína/imunologia , Animais , Modelos Animais de Doenças , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Humanos , Lenalidomida , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/imunologia , Atrofia de Múltiplos Sistemas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
J Alzheimers Dis ; 52(4): 1453-9, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27079710

RESUMO

Adiponectin (APN) is protective in animal models of neurodegenerative diseases, but the role of APN in human brain has not been established. Using an enzyme-linked immunosorbent assay, we found that APN was significantly decreased in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD), compared to those in patients with mild cognitive impairment (MCI) and in normal controls (NC), despite elevation of APN in serum of patients with MCI and AD compared to that in NC. The discrepancy of CSF APN from serum APN in AD may suggest some critical actions of APN in the pathogenesis of AD. Indeed, it was histologically observed that APN was co-localized with tau in neurofibrillary tangles and immunoblot analysis showed that the functional trimers of APN were significantly decreased in AD compared to those in NC. Collectively, a loss of function of APN may be involved in the pathogenesis of AD.


Assuntos
Adiponectina/líquido cefalorraquidiano , Doença de Alzheimer/etiologia , Adiponectina/análise , Adiponectina/sangue , Adiponectina/deficiência , Idoso , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Química Encefálica , Estudos de Casos e Controles , Disfunção Cognitiva/sangue , Disfunção Cognitiva/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa