Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Res ; 216(Pt 3): 114680, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332672

RESUMO

Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 ± 0.002, 0.04 ± 0.001, and 0.12 ± 0.002 g C m-2 yr-1 at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 ± 17.6% for precipitation, 10.9 ± 5.8% for snowpit, and 10.7 ± 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.


Assuntos
Monitoramento Ambiental , Rios , Monitoramento Ambiental/métodos , Tibet , Camada de Gelo , Fuligem/análise , Carbono/análise , Água/análise
2.
J Environ Sci (China) ; 131: 84-95, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37225383

RESUMO

To elucidate the variations in mass concentrations of organic carbon (OC) and black carbon (BC) in PM2.5 and their light absorption characteristics in Lanzhou, we conducted one-year online measurements by using a newly developed total carbon analyzer (TCA08) coupled with an aethalometer (AE33) from July 2018 to July 2019. The mean OC and BC concentrations were 6.4 ± 4.4 and 2.0 ± 1.3 µg/m3, respectively. Clear seasonal variations were observed for both components, with winter having the highest concentrations, followed by autumn, spring, and summer. The diurnal variations of OC and BC concentrations were similar throughout the year, with daily two peaks occurring in the morning and evening, respectively. A relatively low OC/BC ratio (3.3 ± 1.2, n = 345) were observed, indicating that fossil fuel combustion was the primary source of the carbonaceous components. This is further substantiated by relatively low biomass burning contribution (fbiomass: 27.1% ± 11.3%) to BC using aethalometer based measurement though fbiomass value which increased significantly in winter (41.6% ± 5.7%). We estimated a considerable brown carbon (BrC) contribution to the total absorption coefficient (babs) at 370 nm (yearly average of 30.8% ± 11.1%), with a winter maximum of 44.2% ± 4.1% and a summer minimum of 19.2% ± 4.2%. Calculation of the wavelength dependence of total babs revealed an annual mean AAE370-520 value of 4.2 ± 0.5, with slightly higher values in spring and winter. The mass absorption cross-section of BrC also exhibited higher values in winter, with an annual mean of 5.4 ± 1.9 m2/g, reflecting the impact of emissions from increased biomass burning on BrC concentrations.


Assuntos
Carbono , Ritmo Circadiano , China , Biomassa , Fuligem
3.
Arch Microbiol ; 204(4): 222, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35344106

RESUMO

Here, the taxonomical composition and seasonal dynamics of airborne microbial communities were described in the urban city of Lanzhou, Northwest China. Year-long samples were studied in two filter membranes (Quartz and PTFE). Higher microbial loads were reported in the PTFE than in the quartz filter. Onefold decrease was reported in bacterial loads in spring and summer than winter and autumn for both filters. The fungal loadings were lowest during winter and highest during autumn, followed by summer. The microbial communities included Actinobacteria and Proteobacteria, Ascomycota, and Basidiomycota as major components. Maximum abundance of the members from Gammaproteobacteria, Coriobacteria and Clostridia were studied in all seasons on PTFE membrane, followed by, Erysipelotrichia, Negativicutes and Fusobacteria. Members of Actinobacteria and Bacilli showed higher abundance in spring and winter, with a small proportion during autumn. Members of Clostridia, Gammaproteobacteria, Bacilli, and Actinobacteria showed maximum abundance on the quartz filter in all the seasons. Similarly, on the PTFE, fungi including Dothideomycetes and Agaricomycetes were dominant, followed by Saccharomycetes during summer and winter. The result showed that PM2.5, SO42-, NO2-, Na+, EC, and OC are important environmental parameters influencing the seasonal microbial community. However, the relation of the microbiome with the environment cannot be confidently defined because the environmental factors are changeable and yet interrelated.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Fungos/genética , Proteobactérias/genética , Estações do Ano
4.
Bull Environ Contam Toxicol ; 108(2): 219-224, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34993566

RESUMO

Arid lands such as deserts cover more than 35% of the Earth's land surface. Concerns regarding ground-level O3 pollution have been widely addressed in many regions in China, but the behavior of the O3 cycles in the desert atmosphere remains poorly understood. An 8-year observation was conducted to investigate the long-term temporal O3 variations in the atmosphere of the Taklimakan Desert, western China. The results showed that the diurnal and seasonal variations of O3 were mainly influenced by natural processes such as temperature, leading to a different temporal pattern compared with other Chinese regions under the intensive influence of anthropogenic activities. Moreover, the long-term pattern indicates that there exists decoupling trends of O3 variations between our study site (i.e., decreasing trend) and the developed regions in China (i.e., increasing trend). Knowledge of the temporal O3 patterns could therefore provide crucial insights for future effective O3 control strategies in China.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Atmosfera , China , Monitoramento Ambiental , Ozônio/análise , Estações do Ano
5.
J Environ Sci (China) ; 115: 10-24, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969440

RESUMO

This study reports for the first time a comprehensive analysis of nitrogenous and carbonaceous aerosols in simultaneously collected PM2.5 and TSP during pre-monsoon (March-May 2018) from a highly polluted urban Kathmandu Valley (KV) of the Himalayan foothills. The mean mass concentration of PM2.5 (129.8 µg/m3) was only ~25% of TSP mass (558.7 µg/ m3) indicating the dominance of coarser mode aerosols. However, the mean concentration as well as fractional contributions of water-soluble total nitrogen (WSTN) and carbonaceous species reveal their predominance in find-mode aerosols. The mean mass concentration of WSTN was 17.43±4.70 µg/m3 (14%) in PM2.5 and 24.64±8.07 µg/m3 (5%) in TSP. Moreover, the fractional contribution of total carbonaceous aerosols (TCA) is much higher in PM2.5 (~34%) than that in TSP (~20%). The relatively low OC/EC ratio in PM2.5 (3.03 ± 1.47) and TSP (4.64 ± 1.73) suggests fossil fuel combustion as the major sources of carbonaceous aerosols with contributions from secondary organic aerosols. Five-day air mass back trajectories simulated with the HYSPLIT model, together with MODIS fire counts indicate the influence of local emissions as well as transported pollutants from the Indo-Gangetic Plain region to the south of the Himalayan foothills. Principal component analysis (PCA) also suggests a mixed contribution from other local anthropogenic, biomass burning, and crustal sources. Our results highlight that it is necessary to control local emissions as well as regional transport while designing mitigation measures to reduce the KV's air pollution.


Assuntos
Poluentes Atmosféricos , Incêndios , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Nitrogênio , Material Particulado/análise , Estações do Ano
6.
J Environ Sci (China) ; 112: 1-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955192

RESUMO

Much attention is drawn to polycyclic aromatic hydrocarbons (PAHs) as an air pollutant due to their toxic, mutagenic and carcinogenic properties. Therefore, to understand the levels, seasonality, sources and potential health risk of PAHs in two distinct geographical locations at Karachi and Mardan in Pakistan, total suspended particle (TSP) samples were collected for over one year period. The average total PAH concentrations were 31.5 ± 24.4 and 199 ± 229 ng/m3 in Karachi and Mardan, respectively. The significantly lower concentration in Karachi was attributed to diffusion and dilution of the PAHs by the influence of clean air mass from the Arabian sea and high temperature, enhancing the volatilization of the particle phase PAHs to the gas phase. Conversely, the higher concentration (~6 times) in Mardan was due to large influence from local and regional emission sources. A clear seasonality was observed at both the sites, with the higher values in winter and post-monsoon due to higher emissions and less scavenging, and lower values during monsoon season due to the dilution effect. Diagnostic ratios and principal component analysis indicated that PAHs in both sites originated from traffic and mixed combustion sources (fossil fuels and biomass). The average total BaP equivalent concentrations (BaPeq) in Karachi and Mardan were 3.26 and 34 ng/m3, respectively, which were much higher than the WHO guideline of 1 ng/m3. The average estimates of incremental lifetime cancer risk from exposure to airborne BaPeq via inhalation indicated a risk to human health from atmospheric PAHs at both sites.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Humanos , Paquistão , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Policíclicos/análise , Medição de Risco , Estações do Ano
7.
Environ Sci Technol ; 55(5): 2839-2846, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33555863

RESUMO

Carbonates cause large uncertainties in determining the concentrations of organic carbon (OC) and elemental carbon (EC), as well as EC's light absorption characteristics, in arid locations, such as Central Asia. To investigate this influence, a comparison between acid (HCl)-treated and original total suspended particle (TSP) samples was conducted in Dushanbe, Tajikistan. According to the results, the OC and EC concentrations were overestimated by approximately 22.8 ± 33.8 and 32.5 ± 33.5%, with the actual values being 11.9 ± 3.0 and 5.13 ± 2.24 µg m-3, respectively. It was found that carbonates had a larger influence from May to October than during the other months, which was significantly correlated with the amount of TSPs on the filter. Furthermore, the mass absorption cross-section of EC (MACEC) increased from 4.52 ± 1.32 to 6.02 ± 1.49 m2 g-1; this indicated that carbonates can significantly decrease MACEC, thus causing an underestimation of approximately 23.9 ± 16.7%. This is the first study that quantifies the influence of carbonates on the light-absorbing abilities of EC.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Carbonatos , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Tadjiquistão
8.
J Environ Sci (China) ; 102: 37-52, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33637262

RESUMO

Precipitation represents an important phenomenon for carbon and nitrogen deposition. Here, the concentrations and fluxes of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) with their potential sources were analyzed in wet precipitation during summer monsoon from the Northern Indo-Gangetic Plain (IGP), important but neglected area. The volume-weighted mean (VWM) concentration of DOC and TDN were 687.04 and 1210.23 µg/L, respectively. Similarly, the VWM concentration of major ions were in a sequence of NH4+ > Ca2+ > SO42- > Na+ > K+ > NO3- > Cl- > Mg2+ > F- > NO2-, suggesting NH4+ and Ca2+ from agricultural activities and crustal dust played a vital role in precipitation chemistry. Moreover, the wet deposition flux of DOC and TDN were 9.95 and 17.06 kg/(ha⋅year), respectively. The wet deposition flux of inorganic nitrogen species such as NH4+-N and NO3--N were 14.31 and 0.47 kg/(ha⋅year), respectively, demonstrating the strong influence of emission sources and precipitation volume. Source attribution from different analysis suggested the influence of biomass burning on DOC and anthropogenic activities (agriculture, animal husbandry) on nitrogenous species. The air-mass back trajectory analysis indicated the influence of air masses originating from the Bay of Bengal, which possibly carried marine and anthropogenic pollutants along with the biomass burning emissions to the sampling site. This study bridges the data gap in the less studied part of the northern IGP region and provides new information for policy makers to deal with pollution control.


Assuntos
Poluentes Atmosféricos , Nitrogênio , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Nitrogênio/análise , Chuva , Estações do Ano
9.
Environ Sci Technol ; 54(9): 5429-5436, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32242420

RESUMO

Mercury (Hg) and lead (Pb) accumulation since the Industrial Revolution has been generally observed to increase concurrently in lake sedimentary records around the world. Located downwind during the monsoon season from the rapidly developing South Asia, the Himalayas and the Tibetan Plateau are expected to receive direct anthropogenic Hg and Pb loadings, yet the source, pathway, and effects of such transport remain poorly known due to logistic challenges in accessing this region. When studying the sediment record from Lake Gokyo (4750 m above sea level (a.s.l.)) in the Himalayas, we find remarkably different Hg and Pb accumulation trends over the past 260 years. Although Hg accumulation has continued to increase since the Industrial Revolution, Pb accumulation peaked during that time and has been decreasing since then. Stable isotope analysis reveals that the decoupling trends between these two elements are due to different sources and pathways of Hg and Pb in the region. Both δ202Hg and Δ199Hg have been increasing since the Industrial Revolution, suggesting that anthropogenic Hg emissions from South Asia have been continuously increasing and that the Indian monsoon-driven wet deposition of atmospheric Hg is the dominant pathway for Hg accumulation in the sediments. In contrast, analysis of 206Pb/207Pb and 208Pb/207Pb ratios suggests that Pb accumulation in the sediments originates primarily from natural sources and that the decreasing trend of Pb accumulation is most likely due to a weakening input of atmospheric mineral dust by the westerlies. These decoupling trends highlight the ongoing issue of transboundary Hg transport to the Himalayas and the Tibetan Plateau that are source waters for major freshwater systems in Asia and calls for regional and international collaborations on Hg emission controls in South Asia.


Assuntos
Mercúrio/análise , Ásia , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Chumbo
10.
J Environ Sci (China) ; 90: 286-296, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081324

RESUMO

Characteristics of carbonaceous aerosol (CA) and its light absorption properties are limited in Karachi, which is one of the most polluted metropolitan cities in South Asia. This study presents a comprehensive measurement of seasonality of CA compositions and mass absorption cross-section (MAC) of elemental carbon (EC) and water-soluble organic carbon (WSOC) in total suspended particles (TSP) collected from February 2015 to March 2017 in the southwest part of Karachi. The average TSP, organic carbon (OC), and EC concentrations were extremely high with values as 391.0 ± 217.0, 37.2 ± 28.0, and 8.53 ± 6.97 µg/m3, respectively. These components showed clear seasonal variations with high concentrations occurring during fall and winter followed by spring and summer. SO42-, NO3-, K+, and NH4+ showed similar variations with CA, implying the significant influence on atmospheric pollutants from anthropogenic activities. Relatively lower OC/EC ratio (4.20 ± 2.50) compared with remote regions further indicates fossil fuel combustion as a primary source of CA. Meanwhile, sea salt and soil dust are important contribution sources for TSP. The average MAC of EC (632 nm) and WSOC (365 nm) were 6.56 ± 2.70 and 0.97 ± 0.37 m2/g, respectively. MACEC is comparable to that in urban areas but lower than that in remote regions, indicating the significant influence of local emissions. MACWSOC showed opposite distribution with EC, further suggesting that OC was significantly affected by local fossil fuel combustion. In addition, dust might be an important factor increasing MACWSOC particularly during spring and summer.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Carbono , China , Cidades , Paquistão , Estações do Ano
11.
Environ Sci Technol ; 53(10): 5641-5651, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30994333

RESUMO

Black carbon (BC) is one of the major drivers of climate change, and its measurement in different environment is crucial for the better understanding of long-term trends in the Himalayan-Tibetan Plateau (HTP) as climate warming has intensified in the region. We present the measurement of BC concentration from six lake sediments in the HTP to reconstruct historical BC deposition since the pre-industrial era. Our results show an increasing trend of BC concurrent with increased anthropogenic emission patterns after the commencement of the industrialization era during the 1950s. Also, sedimentation rates and glacier melt strengthening influenced the total input of BC into the lake. Source identification, based on the char and soot composition of BC, suggests biomass-burning emissions as a major contributor to BC, which is further corroborated by open-fire occurrence events in the region. The increasing BC trend continues to recent years, indicating increasing BC emissions, mainly from South Asia.


Assuntos
Lagos , Fuligem , Ásia , Carbono , Monitoramento Ambiental , Sedimentos Geológicos , Tibet
12.
Environ Sci Technol ; 53(12): 6632-6639, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117527

RESUMO

Cryoconite is a granular aggregate, comprised of both mineral and biological material, and known to accumulate atmospheric contaminants. In this study, cryoconite was sampled from seven high-elevation glaciers in Western China to investigate the spatial and altitudinal patterns of atmospheric mercury (Hg) accumulation in the cryoconite. The results show that total Hg (HgT) concentrations in cryoconite were significant with relatively higher Hg accumulation in the southern glaciers (66.0 ± 29.3 ng g-1), monsoon-influenced regions, than those in the northern glaciers (42.5 ± 20.7 ng g-1), westerlies-influenced regions. The altitudinal profile indicates that HgT concentrations in the northern glaciers decrease significantly with altitude, while those in the southern glaciers generally increase toward higher elevations. Unexpectedly high accumulation of methyl-Hg (MeHg) with an average of 1.0 ± 0.4 ng g-1 was also detected in the cryoconite samples, revealing the surface of cryoconite could act as a potential site for Hg methylation in alpine environments. Our preliminary estimate suggests a storage of ∼34.3 ± 17.4 and 0.65 ± 0.28 kg of HgT and MeHg from a single year of formation process in the glacier cryoconite. Therefore, glacier cryoconite could play an important role in Hg storage and transformation, which may result in downstream effects on glacier-fed ecosystems under climate warming scenario.


Assuntos
Camada de Gelo , Mercúrio , China , Ecossistema
13.
Bull Environ Contam Toxicol ; 99(4): 500-505, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28840577

RESUMO

This study quantified concentrations of mercury (Hg) and its trophic transfer along the fish community in the Indrawati River, Nepal. Stable isotope ratios of nitrogen (δ15N) and carbon (δ13C), complemented by stomach contents data were used to assess the food web structure and trophic transfer of Hg in 54 fishes; 43 Shizothorax richardsonii and 11 Barilius spp. [B. bendelisis (1), B. vagra (3) and B. barila (7)]. Sixty-one muscle samples (including six replicates) were used for the analysis of total mercury (THg) and stable isotopes. Mean THg concentrations in B. spp. and the more common species S. richardsonii was observed to be 218.23 (ng/g, ww) and 90.82 (ng/g, ww), respectively. THg versus total length in both S. richardsonii and B. spp. showed a decreasing tendency with an increase in age. Regression of logTHg versus δ15N among the fish species showed a significant positive correlation only in S. richardsonii indicating biomagnification along the trophic level in this species.


Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Mercúrio/análise , Rios/química , Poluentes Químicos da Água/análise , Animais , Isótopos de Carbono/análise , Cadeia Alimentar , Conteúdo Gastrointestinal/química , Músculos/química , Nepal , Isótopos de Nitrogênio/análise , Especificidade da Espécie
14.
J Environ Sci (China) ; 52: 18-28, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28254037

RESUMO

In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metais Terras Raras/análise , Neve/química , Oligoelementos/análise , China , Cidades , Tibet
15.
Bull Environ Contam Toxicol ; 97(6): 855-862, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734088

RESUMO

This study investigates the contamination levels and risk assessments of 14 elements (Ba, Cd, Co, Cr, Cu, Pb, Li, Mn, Mo, Ni, Sb, Sr, V and Zn) in three sub-basins of Himalayan rivers. Water samples were collected and the hazard quotient (HQ), hazard index (HI), and water quality index (WQI) were calculated. Total average concentrations of the metals were 135.03, 80.10 and 98.34 µg/L in Gandaki, Indrawati and Dudh Koshi rivers, respectively. The results of HQ and HI were less than unity, suggesting a low risk of metals in the region. However, HQ for antimony (Sb) was found to be 4.4 × 10-1, 2.1 × 10-1 and 5.4 × 10-1 in three river basins and HI near unity, suggesting its potential risk. Additionally, HI for Cd in Indrawati was 5.4 × 10-1 also close to unity, suggesting that Cd could have a potential risk to the local residents and aquatic ecosystems. Further, WQI suggested that the rivers Gandaki and Indrawati fell into the excellent water quality and river Dudh Koshi fell into good water quality.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Nepal , Qualidade da Água
16.
J Environ Sci (China) ; 44: 213-223, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27266318

RESUMO

The Tibetan Plateau is home to the largest aggregate of glaciers outside the Polar Regions and is a source of fresh water to 1.4 billion people. Yet little is known about the transportation and cycling of Hg in high-elevation glacier basins on Tibetan Plateau. In this study, surface snow, glacier melting stream water and lake water samples were collected from the Qiangyong Glacier Basin. The spatiotemporal distribution and transportation of Hg from glacier to lake were investigated. Significant diurnal variations of dissolved Hg (DHg) concentrations were observed in the river water, with low concentrations in the morning (8:00am-14:00pm) and high concentrations in the afternoon (16:00pm-20:00pm). The DHg concentrations were exponentially correlated with runoff, which indicated that runoff was the dominant factor affecting DHg concentrations in the river water. Moreover, significant decreases of Hg were observed during transportation from glacier to lake. DHg adsorption onto particulates followed by the sedimentation of particulate-bound Hg (PHg) could be possible as an important Hg removal mechanism during the transportation process. Significant decreases in Hg concentrations were observed downstream of Xiao Qiangyong Lake, which indicated that the high-elevation lake system could significantly affect the distribution and transportation of Hg in the Qiangyong Glacier Basin.


Assuntos
Monitoramento Ambiental , Camada de Gelo/química , Lagos/química , Mercúrio/análise , Poluentes Químicos da Água/análise , China , Modelos Químicos , Tibet , Movimentos da Água
17.
Environ Pollut ; 342: 123071, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070642

RESUMO

Mercury (Hg) has received increasing public attention owing to its high toxicity and global distribution capability via long-range atmospheric transportation. Guanzhong Basin (GB) is vital for the industrial and economic development of Shaanxi Province. To determine the concentration, spatial distribution, seasonal variation, sources, and health risks of particulate-bound mercury (PBM), PM2.5 samples were collected at three sampling sites representing urban, rural, and remote areas during winter and summer in GB. The three sampling sites were in Xi'an (XN), Taibai (TB), and the Qinling Mountains (QL). The mean PBM concentrations in XN, TB, and QL in winter were 130 ± 115 pg m-3, 57.5 ± 47.3 pg m-3, and 53.6 ± 38.5 pg m-3, respectively, higher than in summer (13.7 ± 7.11 pg m-3, 8.01 ± 2.86 pg m-3, and 7.75 ± 2.85 pg m-3, respectively). PBM concentrations are affected by precipitation, meteorological conditions (temperature and mixed boundary layer), emission sources, and atmospheric transport. During the sampling period, the PBM dry deposition in XN, TB, and QL was 1.90 µg m-2 (2 months), 0.835 µg m-2 (2 months), and 0.787 µg m-2 (2 months), respectively, lower than the range reported in national megacities. According to backward trajectory and potential source contribution factor (PSCF) analysis, mercury pollution in XN is mainly affected by local pollution source emissions, whereas the polluted air mass in TB and QL originates from local anthropogenic emissions and long-distance atmospheric transmission. The non-carcinogenic health risk values of PBM in XN, TB, and QL in winter and summer were less than 1, indicating that the risk of atmospheric PBM to the health of the residents was negligible.


Assuntos
Poluentes Atmosféricos , Mercúrio , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Mercúrio/análise , Poluição Ambiental/análise , Estações do Ano , Medição de Risco , Material Particulado/análise , China
18.
Sci Total Environ ; 927: 172262, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583605

RESUMO

South and Southeast Asia (SSA) emitted black carbon (BC) exerts potential effects on glacier and snow melting and regional climate change in the Tibetan Plateau. In this study, online BC measurements were conducted for 1 year at a remote village located at the terminus of the Mingyong Glacier below the Meili Snow Mountains. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to investigate the contribution and potential effect of SSA-emitted BC. In addition, variations in the light absorption characteristics of BC and brown carbon (BrC) were examined. The results indicated that the annual mean concentration of BC was 415 ± 372 ngm-3, with the highest concentration observed in April (monthly mean: 930 ± 484 ngm-3). BC exhibited a similar diurnal variation throughout the year, with two peaks observed in the morning (from 8:00 to 9:00 AM) and in the afternoon (from 4:00 to 5:00 PM), with even lower values at nighttime. At a short wavelength of 370 nm, the absorption coefficient (babs) reached its maximum value, and the majority of babs values were < 20 Mm-1, indicating that the atmosphere was not overloaded with BC. At the same wavelength, BrC substantially contributed to babs, with an annual mean of 25.2 % ± 12.8 %. SSA was the largest contributor of BC (annual mean: 51.1 %) in the study area, particularly in spring (65.6 %). However, its contributions reached 20.2 % in summer, indicating non-negligible emissions from activities in other regions. In the atmosphere, the SSA BC-induced radiative forcing (RF) over the study region was positive. While at the near surface, the RF exhibited a significant seasonal variation, with the larger RF values occurring in winter and spring. Overall, our findings highlight the importance of controlling BC emissions from SSA to protect the Tibetan Plateau against pollution-related glacier and snow cover melting.

19.
Environ Pollut ; 344: 123359, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228261

RESUMO

Atmospheric pollution has detrimental effects on human health and ecosystems. The southern region of the Himalayas, undergoing rapid urbanization and intense human activities, faces poor air quality marked by high aerosol loadings. In this study, we conducted a two-year PM10 sampling in the suburban area (Godavari) of Kathmandu, a representative metropolis situated in the southern part of the central Himalayas. The trace elements were measured to depict aerosol-bound element loadings, seasonality, and potential sources. The mean concentrations of trace elements varied considerably, ranging from 0.27 ± 0.19 ng m-3 for Tl to 1252.78 ng m-3 for Zn. The average concentration of Co and Ni was 1.2 and 22.4 times higher, respectively, than those in Lhasa city in Tibet in the northern Himalayas. The concentration of Pb was 38 times lower than that in Lahore, Pakistan, and 9 times lower than urban sites in India. For the seasonality, the trace element concentrations displayed remarkable variation, with higher concentrations during the non-monsoon seasons and lower concentrations during the monsoon season. This trend was primarily influenced by anthropogenic activities such as low-grade fuel combustion in vehicles, coal combustion in brick kilns, and biomass burning, along with seasonal rainfall that induced aerosol washout. The enrichment factors (EFs) analysis revealed that Cd, Zn, Sb, Ni, Cu, Cr, and Pb had higher EFs, indicating their significant contributions from anthropogenic sources. In contrast, elements like Tl, Co, V, Cs, U, Ba, Th, and Sr, characterized by lower EFs, were mainly associated with natural sources. The Pb isotopic ratio profiles exhibited the Pb in PM10 are derived major contribution from legacy lead. Biomass burning contributed to the Pb source in winter. These findings provide policymakers with valuable insights to develop guidelines and strategies aimed at improving air quality and mitigating the impact of aerosol pollution on human health in the Himalayan region.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Humanos , Poluentes Atmosféricos/análise , Oligoelementos/análise , Monitoramento Ambiental , Ecossistema , Himalaia , Chumbo/análise , Aerossóis/análise
20.
Environ Pollut ; 329: 121641, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37100371

RESUMO

Brown carbon aerosols show obvious light absorption properties in the ultraviolet-visible (UV-Vis) range, which has an important impact on photochemistry and climate. In this study, experimental samples originated from the North slope of the Qinling Mountains (at two remote suburb sites) to study the optical properties of water-soluble brown carbon (WS-BrC) in PM2.5. The WS-BrC of TY (a sampling site on the edge of Tangyu of Mei county) has a stronger light absorption ability than CH (a rural sampling site, near the Cuihua Mountains scenic spot). The direct radiation effect of WS-BrC relative to elemental carbon (EC) is 6.67 ± 1.36% in TY and 24.13 ± 10.84% in CH in the UV range, respectively. In addition, two humic-like and one protein-like fluorophore components in WS-BrC were identified by fluorescence spectrum and parallel factor (EEMs-PARAFAC). Humification index (HIX), biological index (BIX) and fluorescence index (FI) together showed that the WS-BrC in the two sites may originate from fresh aerosol emissions. Potential source analysis of Positive Matrix Factorization (PMF) model show that the combustion process, vehicle, secondary formation and road dust are the main contributors to WS-BrC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Estações do Ano , Clima , Carbono/análise , Aerossóis/análise , Água/química , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa