Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Vector Borne Dis ; 53(2): 156-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27353586

RESUMO

BACKGROUND & OBJECTIVES: NS2B-NS3 protease (NS2B-NS3 pro ) of dengue virus (DENV) is the prime therapeutic target for the development of anti-dengue drug to combat the DENV infection, which is currently an increasing health problem in many countries. In the area of antiviral drug discovery, numerous reports on the antiviral activity of various medicinal plants against dengue viruses have been published. Neem plant (Azadirachta indica) is one among those medicinal plants which is reported to show potential antiviral activity against DENV. But active principle of neem plant extract which has inhibitory potential against DENV NS2B-NS3 pro is not yet reported. The aim of the present study was to explore the inhibitory potential of five triterpenoids from neem plant, viz. nimbin, desacetylnimbin, desacetylsalannin, azadirachtin and salannin, against DENV NS2B-NS3 pro. METHODS: The molecular 3D structural data of DENV NS2B-NS3 pro and selected triterpenoids of neem plant were collected from protein databank (PDB ID: 2VBC) and PubChem database respectively. The molecular docking approach was employed to find out the in silico inhibitory potential of the five triterpenoids against DENV NS2B- NS3 pro. RESULTS: The molecular docking results showed that nimbin, desacetylnimbin and desacetylsalannin have good binding affinity with DENV NS2B-NS3 pro , while azadirachtin and salannin did not show any interaction with the target protein. It was observed that the DENV NS2B-NS3 pro binding energy for nimbin, desacetylnimbin and desacetylsalannin were -5.56, -5.24 and -3.43 kcal/mol, respectively. INTERPRETATION & CONCLUSION: The findings attained through this study on the molecular interaction mode of three neem triterpenoids and DENV NS2B-NS3 pro can be considered for further in vitro and in vivo validation for designing new potential drugs for DENV infection.


Assuntos
Antivirais/farmacologia , Azadirachta/química , Compostos Fitoquímicos/farmacologia , Inibidores de Proteases/farmacologia , Triterpenos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Simulação por Computador , Vírus da Dengue/enzimologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Inibidores de Proteases/química , Conformação Proteica , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , Serina Endopeptidases/química , Triterpenos/química , Proteínas não Estruturais Virais/química
2.
J Biomol Struct Dyn ; 42(2): 1031-1046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37545158

RESUMO

Type 2 Diabetes (T2D), a chronic metabolic disorder characterized by persistent hyperglycemia, accounts for ∼90% of all types of diabetes. Pancreatic α-amylase is a potential drug target for preventing postprandial hyperglycemia and inhibiting T2D in humans. Although many synthetic drugs have been identified against pancreatic α-amylase, however, reported several side effects, and plant-derived natural products are less explored against T2D. This study tested 34 flavonoids derived from the plant Physalis peruviana against the human pancreatic α-amylase (HPA) using in silico computational approaches such as molecular docking and molecular dynamics simulation approaches. Schrödinger, a drug discovery package with modules applicable for molecular docking, protein-ligand interaction analysis, molecular dynamics, post-dynamics simulation, and binding free energy calculation, was employed for all computational studies. Four flavonoids, namely, Chlorogenic acid, Withaperuvin F, Withaperuvin H, and Rutin, were picked based on their docking score ranging between -7.03 kcal/mol and -11.35 kcal/mol compared to the docking score -7.3 kcal/mol of reference ligand, i.e. Myricetin. The molecular dynamics analysis suggested that all flavonoids showed considerable stability within the protein's catalytic pocket, except chlorogenic acid, which showed high deviation during the last 15 ns. However, the interactions observed in initial docking and extracted from the simulation trajectory involved > 90% identical residues, indicating the affinity and stability of the docked flavonoids with the protein. Therefore, all four compounds identified in this study are proposed as promising antidiabetic candidates and should be further considered for their in vitro and in vivo validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Tipo 2 , Physalis , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases , Ácido Clorogênico , Ligantes , Simulação de Acoplamento Molecular , alfa-Amilases Pancreáticas , Flavonoides , Simulação de Dinâmica Molecular
3.
J Biomol Struct Dyn ; 39(4): 1417-1430, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32107969

RESUMO

Dengue virus (DENV) serine protease enzyme, i.e. NS2B-NS3pro (non-structural protein 2B-non-structural protein 3) has been approved as prime drug target for the drug discovery against dengue infection, because of its essential role in viral replication. This study demonstrates the potential of bioflavonoids from Azadirachta indica against dengue infection using computational and experimental approach. Initially, 49 bioflavonoids reported in Azadirachta indica were collected and virtually screened on the catalytic triad of DENV protease, results in the identification of kaempferol-3-O-rutinoside (-9.555 kcal/mol), rutin (-9.324 kcal/mol), hyperoside (-7.879 kcal/mol), and epicatechin (-7.622 kcal/mol) as potent viral protease inhibitors against reference compound quercetin (-6.94 kcal/mol). Subsequently, these docked complexes were analyzed for the stability via molecular dynamics simulations and free binding energy calculations, suggested the considerable stability of selected bioflavonoids with viral protease. Additionally, density functional theory and ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis indicated the least chemical reactivity and considerable medicinal properties, respectively for the screened bioflavonoids by comparison to quercetin. Accordingly, kaempferol 3-O-ß-rutinoside and epicatechin were evaluated at various concentrations for cell viability (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and in vitro antiviral activity (focus forming unit assay) against DENV-2 strain. The antiviral assay showed dose dependent inhibition of DENV-2 infectivity by the selected compounds while maximum 77.7% and 66.2% viral inhibition were recorded for 100 µM kaempferol 3-O-ß-rutinoside and 1000 µM epicatechin, respectively without significant cell toxicity. These results suggested the potential of bioflavonoids from Azadirachta indica in the development of effective drug against dengue infection.Communicated by Ramaswamy H. Sarma.


Assuntos
Azadirachta , Vírus da Dengue , Dengue , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases , Serina Proteases , Proteínas não Estruturais Virais
4.
Brief Funct Genomics ; 16(4): 217-227, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073742

RESUMO

The genome of a pathogenic organism possesses a specific order of nucleotides that contains not only information about the synthesis and expression of proteomes, which are required for its growth and survival, but also about its evolution. Inhibition of any particular protein, which is required for the survival of that pathogenic organism, can be used as a potential therapeutic target for the development of effective drugs to treat its infections. In this review, the genomics, proteomics and evolution of dengue virus have been discussed, which will be helpful in better understanding of its origin, growth, survival and evolution, and may contribute toward development of new efficient anti-dengue drugs.


Assuntos
Vírus da Dengue/genética , Evolução Molecular , Genômica , Proteômica , Sequência de Bases , Cristalografia por Raios X , Humanos , Modelos Moleculares , Filogenia , Sorogrupo
5.
Virusdisease ; 27(3): 220-225, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28466032

RESUMO

Dengue virus (DENV) has emerged as an increasing fitness problem in the world for which no specialized drug is available. The non-structural protein NS3 protease of DENV has already been recognized as a potential therapeutic target for the discovery and development of novel antiviral agents against DENV infections. In this study, we employed the virtual screening technique to explore the potent inhibitors of DENV NS2B/NS3pro from Traditional Chinese Medicine (TCM) database. Total 200 inhibitors from TCM against DENV NS3pro were screened and only five TCM compounds like eriodictyol 7-O-glucuronide, luteolin 8-C-beta-glucopyranoside, (-)-epicatechin-3-O-gallate, 6-O-trans-p-coumaroylgeniposide and luteolin-7-O-glucoside were selected for further analysis which showed binding energies, -7.000, -7.380, -7.380, -7.440 and -7.440 kcal/mol, respectively. The findings of this study suggest that these five TCM compounds can be considered as potent inhibitors for DENV NS2B/NS3pro for the development of anti-dengue drugs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa