Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38609673

RESUMO

The study aimed to provide quantitative information on the utilization of MRI transverse relaxation time constant (MRI-T2) of leg muscles in DMD clinical trials by developing multivariate disease progression models of Duchenne muscular dystrophy (DMD) using 6-min walk distance (6MWD) and MRI-T2. Clinical data were collected from the prospective and longitudinal ImagingNMD study. Disease progression models were developed by a nonlinear mixed-effect modeling approach. Univariate models of 6MWD and MRI-T2 of five muscles were developed separately. Age at assessment was the time metric. Multivariate models were developed by estimating the correlation of 6MWD and MRI-T2 model variables. Full model estimation approach for covariate analysis and five-fold cross validation were conducted. Simulations were performed to compare the models and predict the covariate effects on the trajectories of 6MWD and MRI-T2. Sigmoid Imax and Emax models best captured the profiles of 6MWD and MRI-T2 over age. Steroid use, baseline 6MWD, and baseline MRI-T2 were significant covariates. The median age at which 6MWD is half of its maximum decrease in the five models was similar, while the median age at which MRI-T2 is half of its maximum increase varied depending on the type of muscle. The models connecting 6MWD and MRI-T2 successfully quantified how individual characteristics alter disease trajectories. The models demonstrate a plausible correlation between 6MWD and MRI-T2, supporting the use of MRI-T2. The developed models will guide drug developers in using the MRI-T2 to most efficient use in DMD clinical trials.

2.
BMC Cardiovasc Disord ; 22(1): 260, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681116

RESUMO

BACKGROUND: The lack of dystrophin in cardiomyocytes in Duchenne muscular dystrophy (DMD) is associated with progressive decline in cardiac function eventually leading to death by 20-40 years of age. The aim of this prospective study was to determine rate of progressive decline in left ventricular (LV) function in Duchenne muscular dystrophy (DMD) over 5 years. METHODS: Short axis cine and grid tagged images of the LV were acquired in individuals with DMD (n = 59; age = 5.3-18.0 years) yearly, and healthy controls at baseline (n = 16, age = 6.0-18.3 years) on a 3 T MRI scanner. Grid-tagged images were analyzed for composite circumferential strain (ℇcc%) and ℇcc% in six mid LV segments. Cine images were analyzed for left ventricular ejection fraction (LVEF), LV mass (LVM), end-diastolic volume (EDV), end-systolic volume (ESV), LV atrioventricular plane displacement (LVAPD), and circumferential uniformity ratio estimate (CURE). LVM, EDV, and ESV were normalized to body surface area for a normalized index of LVM (LVMI), EDV (EDVI) and ESV (ESVI). RESULTS: At baseline, LV ℇcc% was significantly worse in DMD compared to controls and five of the six mid LV segments demonstrated abnormal strain in DMD. Longitudinal measurements revealed that ℇcc% consistently declined in individuals with DMD with the inferior segments being more affected. LVEF progressively declined between 3 to 5 years post baseline visit. In a multivariate analysis, the use of cardioprotective drugs trended towards positively impacting cardiac measures while loss of ambulation and baseline age were associated with negative impact. Eight out of 17 cardiac parameters reached a minimal clinically important difference with a threshold of 1/3 standard deviation. CONCLUSION: The study shows a worsening of circumferential strain in dystrophic myocardium. The findings emphasize the significance of early and longitudinal assessment of cardiac function in DMD and identify early biomarkers of cardiac dysfunction to help design clinical trials to mitigate cardiac pathology. This study provides valuable non-invasive and non-contrast based natural history data of cardiac changes which can be used to design clinical trials or interpret the results of current trials aimed at mitigating the effects of decreased cardiac function in DMD.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Adolescente , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda
3.
Radiology ; 295(3): 616-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286193

RESUMO

Background Upper extremity MRI and proton MR spectroscopy are increasingly considered to be outcome measures in Duchenne muscular dystrophy (DMD) clinical trials. Purpose To demonstrate the feasibility of acquiring upper extremity MRI and proton (1H) MR spectroscopy measures of T2 and fat fraction in a large, multicenter cohort (ImagingDMD) of ambulatory and nonambulatory individuals with DMD; compare upper and lower extremity muscles by using MRI and 1H MR spectroscopy; and correlate upper extremity MRI and 1H MR spectroscopy measures to function. Materials and Methods In this prospective cross-sectional study, MRI and 1H MR spectroscopy and functional assessment data were acquired from participants with DMD and unaffected control participants at three centers (from January 28, 2016, to April 24, 2018). T2 maps of the shoulder, upper arm, forearm, thigh, and calf were generated from a spin-echo sequence (repetition time msec/echo time msec, 3000/20-320). Fat fraction maps were generated from chemical shift-encoded imaging (eight echo times). Fat fraction and 1H2O T2 in the deltoid and biceps brachii were measured from single-voxel 1H MR spectroscopy (9000/11-243). Groups were compared by using Mann-Whitney test, and relationships between MRI and 1H MR spectroscopy and arm function were assessed by using Spearman correlation. Results This study evaluated 119 male participants with DMD (mean age, 12 years ± 3 [standard deviation]) and 38 unaffected male control participants (mean age, 12 years ± 3). Deltoid and biceps brachii muscles were different in participants with DMD versus control participants in all age groups by using quantitative T2 MRI (P < .001) and 1H MR spectroscopy fat fraction (P < .05). The deltoid, biceps brachii, and triceps brachii were affected to the same extent (P > .05) as the soleus and medial gastrocnemius. Negative correlations were observed between arm function and MRI (T2: range among muscles, ρ = -0.53 to -0.73 [P < .01]; fat fraction, ρ = -0.49 to -0.70 [P < .01]) and 1H MR spectroscopy fat fraction (ρ = -0.64 to -0.71; P < .01). Conclusion This multicenter study demonstrated early and progressive involvement of upper extremity muscles in Duchenne muscular dystrophy (DMD) and showed the feasibility of MRI and 1H MR spectroscopy to track disease progression over a wide range of ages in participants with DMD. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Braço/diagnóstico por imagem , Perna (Membro)/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adolescente , Estudos de Casos e Controles , Criança , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Estudos de Viabilidade , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Estudos Prospectivos
4.
Muscle Nerve ; 58(5): 631-638, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29742798

RESUMO

INTRODUCTION: Tests of ambulatory function are common clinical trial endpoints in Duchenne muscular dystrophy (DMD). Using these tests, the ImagingDMD study has generated a large data set that can describe the contemporary natural history of DMD in 5-12.9-year-olds. METHODS: Ninety-two corticosteroid-treated boys with DMD and 45 controls participated in this longitudinal study. Participants performed the 6-minute walk test (6MWT) and timed function tests (TFT: 10-m walk/run, climbing 4 stairs, supine to stand). RESULTS: Boys with DMD had impaired functional performance even at 5-6.9 years old. Boys older than 7 had significant declines in function over 1 year for 10-m walk/run and 6MWT. Eighty percent of participants could perform all functional tests at 9 years old. TFTs appear to be slightly more responsive and predictive of disease progression than the 6MWT in 7-12.9 year olds. DISCUSSION: This study provides insight into the contemporary natural history of key functional endpoints in DMD. Muscle Nerve 58: 631-638, 2018.


Assuntos
Imageamento por Ressonância Magnética , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/fisiopatologia , Avaliação de Resultados em Cuidados de Saúde , Caminhada/fisiologia , Adolescente , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Fatores de Tempo , Teste de Caminhada
5.
Ann Neurol ; 79(4): 535-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891991

RESUMO

OBJECTIVE: The aim of this study was to describe Duchenne muscular dystrophy (DMD) disease progression in the lower extremity muscles over 12 months using quantitative magnetic resonance (MR) biomarkers, collected across three sites in a large cohort. METHODS: A total of 109 ambulatory boys with DMD (8.7 ± 2.0 years; range, 5.0-12.9) completed baseline and 1-year follow-up quantitative MR imaging (transverse relaxation time constant; MRI-T2 ), MR spectroscopy (fat fraction and (1) H2 O T2 ), and 6-minute walk test (6MWT) measurements. A subset of boys completed additional measurements after 3 or 6 months. RESULTS: MRI-T2 and fat fraction increased significantly over 12 months in all age groups, including in 5- to 6.9-year-old boys. Significant increases in vastus lateralis (VL) fat fraction were observed in 3 and 6 months. Even in boys whose 6MWT performance improved or remained stable over 1 year, significant increases in MRI-T2 and fat fraction were found. Of all the muscles examined, the VL and biceps femoris long head were the most responsive to disease progression in boys with DMD. INTERPRETATION: MR biomarkers are responsive to disease progression in 5- to 12.9-year-old boys with DMD and able to detect subclinical disease progression in DMD, even within short (3-6 months) time periods. The measured sensitivity of MR biomarkers in this multicenter study may be critically important to future clinical trials, allowing for smaller sample sizes and/or shorter study windows in this fatal rare disease.


Assuntos
Progressão da Doença , Perna (Membro)/patologia , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Biomarcadores , Criança , Pré-Escolar , Teste de Esforço , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Distrofia Muscular de Duchenne/fisiopatologia
6.
Magn Reson Med ; 71(2): 617-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23508765

RESUMO

PURPOSE: In diffusion-weighted MRI studies of neural tissue, the classical model assumes the statistical mechanics of Brownian motion and predicts a monoexponential signal decay. However, there have been numerous reports of signal decays that are not monoexponential, particularly in the white matter. THEORY: We modeled diffusion in neural tissue from the perspective of the continuous time random walk. The characteristic diffusion decay is represented by the Mittag-Leffler function, which relaxes a priori assumptions about the governing statistics. We then used entropy as a measure of the anomalous features for the characteristic function. METHODS: Diffusion-weighted MRI experiments were performed on a fixed rat brain using an imaging spectrometer at 17.6 T with b-values arrayed up to 25,000 s/mm(2). Additionally, we examined the impact of varying either the gradient strength, q, or mixing time, Δ, on the observed diffusion dynamics. RESULTS: In white and gray matter regions, the Mittag-Leffler and entropy parameters demonstrated new information regarding subdiffusion and produced different image contrast from that of the classical diffusion coefficient. The choice of weighting on q and Δ produced different image contrast within the regions of interest. CONCLUSION: We propose these parameters have the potential as biomarkers for morphology in neural tissue.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Animais , Imagem de Difusão por Ressonância Magnética/métodos , Entropia , Ratos
7.
Magn Reson Med ; 72(1): 8-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24006208

RESUMO

PURPOSE: The relationship between fat fractions (FFs) determined based on multiple TE, unipolar gradient echo images and (1) H magnetic resonance spectroscopy (MRS) was evaluated using different models for fat-water decomposition, signal-to-noise ratios, and excitation flip angles. METHODS: A combination of single-voxel proton spectroscopy ((1) H-MRS) and gradient echo imaging was used to determine muscle FFs in both normal and dystrophic muscles. In order to cover a large range of FFs, the soleus and vastus lateralis muscles of 22 unaffected control subjects, 16 subjects with collagen VI deficiency (COL6), and 71 subjects with Duchenne muscular dystrophy (DMD) were studied. (1) H-MRS-based FF were corrected for the increased muscle (1) H2 O T1 and T2 values observed in dystrophic muscles. RESULTS: Excellent agreement was found between coregistered FFs derived from gradient echo images fit to a multipeak model with noise bias correction and the relaxation-corrected (1) H-MRS FFs (y = 0.93x + 0.003; R(2) = 0.96) across the full range of FFs. Relaxation-corrected (1) H-MRS FFs and imaging-based FFs were significantly elevated (P < 0.01) in the muscles of COL6 and DMD subjects. CONCLUSION: FFs, T2 , and T1 were all sensitive to muscle involvement in dystrophic muscle. MRI offered an additional advantage over single-voxel spectroscopy in that the tissue heterogeneity in FFs could be readily determined.


Assuntos
Tecido Adiposo/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Distrofia Muscular de Duchenne/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Colágeno Tipo IV/deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído
8.
Crit Rev Biomed Eng ; 42(1): 63-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25271359

RESUMO

In this study, we applied continuous random walk theory (CTRW) to develop a new model that characterizes anomalous diffusion in magnetic resonance imaging experiments. Furthermore, we applied a classification scheme based on information theoretic a techniques to characterize the degree of heterogeneity and complexity in biological tissues. From a CTRW approach, the Fourier transform of the generalized solution to the diffusion equation comes in the form of the Mittag-Leffler function. In this solution form, the relative stochastic uncertainty in the diffusion process can be computed with spectral entropy. We interrogated both white and gray matter regions of a fixed rat brain with diffusion - weighted magnetic resonance imaging experiments up to 26,000 s/mm² by independently weighting q and Δ. to investigate the effects on the diffusion phenomena. Our model fractional order parameters, α and ß, and entropy measure, H(q, Δ), differentiated between tissue types and extracted differing information within a region of interest based on the type of diffusion experiment performed. By combining fractional order modeling and information theory, new and powerful biomarkers are available to characterize tissue microstructure and provide contextual information about the anatomical complexity.


Assuntos
Biopolímeros/química , Química Encefálica/efeitos da radiação , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Químicos , Modelos Neurológicos , Imagem Molecular/métodos , Animais , Biomarcadores/química , Simulação por Computador , Difusão/efeitos da radiação , Humanos , Campos Magnéticos
9.
Ann Clin Transl Neurol ; 11(1): 67-78, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932907

RESUMO

OBJECTIVE: Magnetic resonance (MR) measures of muscle quality are highly sensitive to disease progression and predictive of meaningful functional milestones in Duchenne muscular dystrophy (DMD). This investigation aimed to establish the reproducibility, responsiveness to disease progression, and minimum clinically important difference (MCID) for multiple MR biomarkers at different disease stages in DMD using a large natural history dataset. METHODS: Longitudinal MR imaging and spectroscopy outcomes and ambulatory function were measured in 180 individuals with DMD at three sites, including repeated measurements on two separate days (within 1 week) in 111 participants. These data were used to calculate day-to-day reproducibility, responsiveness (standardized response mean, SRM), minimum detectable change, and MCID. A survey of experts was also performed. RESULTS: MR spectroscopy fat fraction (FF), as well as MR imaging transverse relaxation time (MRI-T2 ), measures performed in multiple leg muscles, and had high reproducibility (Pearson's R > 0.95). Responsiveness to disease progression varied by disease stage across muscles. The average FF from upper and lower leg muscles was highly responsive (SRM > 0.9) in both ambulatory and nonambulatory individuals. MCID estimated from the distribution of scores, by anchoring to function, and via expert opinion was between 0.01 and 0.05 for FF and between 0.8 and 3.7 ms for MRI-T2 . INTERPRETATION: MR measures of FF and MRI T2 are reliable and highly responsive to disease progression. The MCID for MR measures is less than or equal to the typical annualized change. These results confirm the suitability of these measures for use in DMD and potentially other muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/diagnóstico por imagem , Relevância Clínica , Reprodutibilidade dos Testes , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Progressão da Doença
10.
Radiology ; 269(1): 198-207, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23696684

RESUMO

PURPOSE: To validate a multicenter protocol that examines lower extremity skeletal muscles of children with Duchenne muscular dystrophy (DMD) by using magnetic resonance (MR) imaging and MR spectroscopy in terms of reproducibility of these measurements within and across centers. MATERIALS AND METHODS: This HIPAA-compliant study was approved by the institutional review boards of all participating centers, and informed consent was obtained from each participant or a guardian. Standardized procedures with MR operator training and quality assurance assessments were implemented, and data were acquired at three centers by using different 3-T MR imaging instruments. Measures of maximal cross-sectional area (CSAmax), transverse relaxation time constant (T2), and lipid fraction were compared among centers in two-compartment coaxial phantoms and in two unaffected adult subjects who visited each center. Also, repeat MR measures were acquired twice on separate days in 30 boys with DMD (10 per center) and 10 unaffected boys. Coefficients of variation (CVs) were computed to examine the repeated-measure variabilities within and across centers. RESULTS: CSAmax, T2 from MR imaging and MR spectroscopy, and lipid fraction were consistent across centers in the phantom (CV, <3%) and in the adult subjects who traveled to each site (CV, 2%-7%). High day-to-day reproducibility in MR measures was observed in boys with DMD (CSAmax, CV = 3.7% [25th percentile, 1.3%; 75th percentile, 5.1%]; contractile area, CV = 4.2% [25th percentile, 0.8%; 75th percentile, 4.9%]; MR imaging T2, CV = 3.1% [25th percentile, 1.2%; 75th percentile, 4.7%]; MR spectroscopy T2, CV = 3.9% [25th percentile, 1.5%; 75th percentile, 5.1%]; and lipid fraction, CV = 4.7% [25th percentile, 1.0%; 75th percentile, 5.3%]). CONCLUSION: The MR protocol implemented in this multicenter study achieved highly reproducible measures of lower extremity muscles across centers and from day to day in ambulatory boys with DMD.


Assuntos
Lipídeos/análise , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Adolescente , Adulto , Biomarcadores/análise , Criança , Pré-Escolar , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
11.
NMR Biomed ; 26(3): 320-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23044995

RESUMO

Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T2). Therefore, the examination of T2 changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T2, percentage of elevated pixels and T2 heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T2 changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T2 -weighted imaging of their lower leg using a 3-T MR system. T2 maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T2 of the traced regions of interest, width of the T2 histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T2, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T2 measures decreased with fat saturation, but were still higher (P < 0.05) in dystrophic muscles than in controls. Further, T2 measures showed positive correlations with timed functional tests (r = 0.23-0.79). The elevated T2 measures with and without fat saturation at all ages of DMD examined (5-15 years) compared with unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema and fat infiltration. This study shows that T2 mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T2 mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/diagnóstico , Adolescente , Criança , Pré-Escolar , Estudos Transversais , Humanos , Perna (Membro)/patologia , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Microporous Mesoporous Mater ; 178: 39-43, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24072979

RESUMO

In this high-resolution magnetic resonance imaging (MRI) study at 17.6 Tesla of a fixed rat brain, we used the continuous time random walk theory (CTRW) for Brownian motion to characterize anomalous diffusion. The complex mesoporus structure of biological tissues (membranes, organelles, and cells) perturbs the motion of the random walker (water molecules in proton MRI) introducing halts between steps (waiting times) and restrictions on step sizes (jump lengths). When such waiting times and jump lengths are scaled with probability distributions that follow simple inverse power laws (t-(1+α), |x|-(1+ß)) non-Gaussian motion gives rise to sub- and super- diffusion. In the CTRW approach, the Fourier transform yields a solution to the generalized diffusion equation that can be expressed by the Mittag-Leffler function (MLF), Eα (- Dα, ß|q|ßΔα). We interrogated both white and gray matter regions in a 1 mm slice of a fixed rat brain (190 µm in plane resolution) with diffusion weighted MRI experiments using b-values up to 25,000 s/mm2, by independently varying q and Δ. When fitting these data to our model, the fractional order parameters, α and ß, and the entropy measure, [Formula: see text], were found to provide excellent contrast between white and gray matter and to give results that were sensitive to the type of diffusion experiment performed.

14.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1437-1449, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37534782

RESUMO

Although regulatory agencies encourage inclusion of imaging biomarkers in clinical trials for Duchenne muscular dystrophy (DMD), industry receives minimal guidance on how to use these biomarkers most beneficially in trials. This study aims to identify the optimal use of muscle fat fraction biomarkers in DMD clinical trials through a quantitative disease-drug-trial modeling and simulation approach. We simultaneously developed two multivariate models quantifying the longitudinal associations between 6-minute walk distance (6MWD) and fat fraction measures from vastus lateralis and soleus muscles. We leveraged the longitudinal individual-level data collected for 10 years through the ImagingDMD study. Age of the individuals at assessment was chosen as the time metric. After the longitudinal dynamic of each measure was modeled separately, the selected univariate models were combined using correlation parameters. Covariates, including baseline scores of the measures and steroid use, were assessed using the full model approach. The nonlinear mixed-effects modeling was performed in Monolix. The final models showed reasonable precision of the parameter estimates. Simulation-based diagnostics and fivefold cross-validation further showed the model's adequacy. The multivariate models will guide drug developers on using fat fraction assessment most efficiently using available data, including the widely used 6MWD. The models will provide valuable information about how individual characteristics alter disease trajectories. We will extend the multivariate models to incorporate trial design parameters and hypothetical drug effects to inform better clinical trial designs through simulation, which will facilitate the design of clinical trials that are both more inclusive and more conclusive using fat fraction biomarkers.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Biomarcadores , Avaliação de Resultados em Cuidados de Saúde
15.
Chest ; 161(3): 753-763, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536384

RESUMO

BACKGROUND: Expiratory muscle weakness and impaired airway clearance are early signs of respiratory dysfunction in Duchenne muscular dystrophy (DMD), a degenerative muscle disorder in which muscle cells are damaged and replaced by fibrofatty tissue. Little is known about expiratory muscle pathology and its relationship to cough and airway clearance capacity; however, the level of muscle replacement by fat can be estimated using MRI and expressed as a fat fraction (FF). RESEARCH QUESTION: How does abdominal expiratory muscle fatty infiltration change over time in DMD and relate to clinical expiratory function? STUDY DESIGN AND METHODS: Individuals with DMD underwent longitudinal MRI of the abdomen to determine FF in the internal oblique, external oblique, and rectus abdominis expiratory muscles. FF data were used to estimate a model of expiratory muscle degeneration by using nonlinear mixed effects and a cumulative distribution function. FVC, maximal inspiratory and expiratory pressures, and peak cough flow were collected as clinical correlates to MRI. RESULTS: Forty individuals with DMD (aged 6-18 years at baseline) participated in up to five visits over 36 months. Modeling estimated the internal oblique progresses most quickly and reached 50% replacement by fat at a mean patient age of 13.0 years (external oblique, 14.0 years; rectus abdominis, 16.2 years). Corticosteroid-untreated individuals (n = 4) reached 50% muscle replacement by fat 3 to 4 years prior to treated individuals. Individuals with mild clinical dystrophic phenotypes (n = 3) reached 50% muscle replacement by fat 4 to 5 years later than corticosteroid-treated individuals. Internal and external oblique FFs near 50% were associated with maximal expiratory pressures < 60 cm H2O and peak cough flows < 270 L/min. INTERPRETATION: These data improve understanding of the early phase of respiratory compromise in DMD, which typically presents as airway clearance dysfunction prior to the onset of hypoventilation, and links expiratory muscle fatty infiltration to pulmonary function measures.


Assuntos
Distrofia Muscular de Duchenne , Corticosteroides/uso terapêutico , Tosse , Humanos , Imageamento por Ressonância Magnética , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/diagnóstico por imagem , Músculos Respiratórios
16.
Neurology ; 99(21): e2406-e2416, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36240102

RESUMO

BACKGROUND AND OBJECTIVES: Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder with a well-characterized disease phenotype but considerable interindividual heterogeneity that is not well understood. The aim of this study was to evaluate the effects of dystrophin variations and genetic modifiers of DMD on rate and age of muscle replacement by fat. METHODS: One hundred seventy-five corticosteroid treated participants from the ImagingDMD natural history study underwent repeated magnetic resonance spectroscopy (MRS) of the vastus lateralis (VL) and soleus (SOL) to determine muscle fat fraction (FF). MRS was performed annually in most instances; however, some individuals had additional visits at 3 or 6 monthss intervals. FF changes over time were modeled using nonlinear mixed effects to estimate disease trajectories based on the age that the VL or SOL reached half-maximum change in FF (mu) and the time required for FF change (sigma). Computed mu and sigma values were evaluated for dystrophin variations that have demonstrated the ability to lead to a mild phenotype as well as compared between different genetic polymorphism groups. RESULTS: Participants with dystrophin gene deletions amenable to exon 8 skipping (n = 4) had minimal increases in SOL FF and had an increase in VL mu value by 4.4 years compared with a reference cohort (p = 0.039). Participants with nonsense variations within exons that may produce milder phenotypes (n = 11) also had minimal increases in SOL and VL FFs. No differences in estimated FF trajectories were seen for individuals amenable to exon 44 skipping (n = 10). Modeling of the SPP1, LTBP4, and thrombospondin-1 (THBS1) genetic modifiers did not result in significant differences in muscle FF trajectories between genotype groups (p > 0.05); however, trends were noted for the polymorphisms associated with long-range regulation of LTBP4 and THBS1 that deserve further follow-up. DISCUSSION: The results of this study link the historically mild phenotypes seen in individuals amenable to exon 8 skipping and with certain nonsense variations with alterations in trajectories of lower extremity muscle replacement by fat.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Éxons , Imageamento por Ressonância Magnética/métodos , Progressão da Doença
17.
J Neuromuscul Dis ; 9(2): 289-302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35124659

RESUMO

BACKGROUND: Joint contractures are common in boys and men with Duchenne muscular dystrophy (DMD), and management of contractures is an important part of care. The optimal methods to prevent and treat contractures are controversial, and the natural history of contracture development is understudied in glucocorticoid treated individuals at joints beyond the ankle. OBJECTIVE: To describe the development of contractures over time in a large cohort of individuals with DMD in relation to ambulatory ability, functional performance, and muscle quality measured using magnetic resonance imaging (MRI) and spectroscopy (MRS). METHODS: In this longitudinal study, range of motion (ROM) was measured annually at the hip, knee, and ankle, and at the elbow, forearm, and wrist at a subset of visits. Ambulatory function (10 meter walk/run and 6 minute walk test) and MR-determined muscle quality (transverse relaxation time (T2) and fat fraction) were measured at each visit. RESULTS: In 178 boys with DMD, contracture prevalence and severity increased with age. Among ambulatory participants, more severe contractures (defined as greater loss of ROM) were significantly associated with worse ambulatory function, and across all participants, more severe contractures significantly associated with higher MRI T2 or MRS FF (ρ: 0.40-0.61 in the lower extremity; 0.20-0.47 in the upper extremity). Agonist/antagonist differences in MRI T2 were not strong predictors of ROM. CONCLUSIONS: Contracture severity increases with disease progression (increasing age and muscle involvement and decreasing functional ability), but is only moderately predicted by muscle fatty infiltration and MRI T2, suggesting that other changes in the muscle, tendon, or joint contribute meaningfully to contracture formation in DMD.


Assuntos
Contratura , Músculo Esquelético , Contratura/diagnóstico por imagem , Contratura/etiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Músculo Esquelético/diagnóstico por imagem , Amplitude de Movimento Articular
18.
Neuromuscul Disord ; 31(5): 385-396, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33678513

RESUMO

Chronic activation of NF-κB is a key driver of muscle degeneration and suppression of muscle regeneration in Duchenne muscular dystrophy. Edasalonexent (CAT-1004) is an orally-administered novel small molecule that covalently links two bioactive compounds (salicylic acid and docosahexaenoic acid) that inhibit NF-κB. This placebo-controlled, proof-of-concept phase 2 study with open-label extension in boys ≥4-<8 years old with any dystrophin mutation examined the effect of edasalonexent (67 or 100 mg/kg/day) compared to placebo or off-treatment control. Endpoints were safety/tolerability, change from baseline in MRI T2 relaxation time of lower leg muscles and functional assessment, as well as pharmacodynamics and biomarkers. Treatment was well-tolerated and the majority of adverse events were mild, and most commonly of the gastrointestinal system (primarily diarrhea). There were no serious adverse events in the edasalonexent groups. Edasalonexent 100 mg/kg was associated with slowing of disease progression and preservation of muscle function compared to an off-treatment control period, with decrease in levels of NF-κB-regulated genes and improvements in biomarkers of muscle health and inflammation. These results support investigating edasalonexent in future trials and have informed the design of the edasalonexent phase 3 clinical trial in boys with Duchenne.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , NF-kappa B , Salicilamidas/uso terapêutico , Criança , Pré-Escolar , Progressão da Doença , Método Duplo-Cego , Distrofina/genética , Humanos , Masculino , Músculo Esquelético , Estudo de Prova de Conceito
19.
J Neuromuscul Dis ; 7(4): 407-417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32538860

RESUMO

Collagen VI-related dystrophies (COL6-RDs) and Duchenne muscular dystrophy (DMD) cause progressive muscle weakness and disability. COL6-RDs are caused by mutations in the COL6 genes (COL6A1, COL6A2 and COL6A3) encoding the extracellular matrix protein collagen VI, and DMD is caused by mutations in the DMD gene encoding the cytoplasmic protein dystrophin. Both COL6-RDs and DMD are characterized by infiltration of the muscles by fatty and fibrotic tissue. This study examined the effect of disease pathology on skeletal muscles in lower extremity muscles of COL6-RDs using timed functional tests, strength measures and qualitative/ quantitative magnetic resonance imaging/spectroscopy measures (MRI/MRS) in comparison to unaffected (control) individuals. Patients with COL6-RD were also compared to age and gender matched patients with DMD.Patients with COL6-RD presented with a typical pattern of fatty infiltration of the muscle giving rise to an apparent halo effect around the muscle, while patients with DMD had evidence of fatty infiltration throughout the muscle areas imaged. Quantitatively, fat fraction, and transverse relaxation time (T2) were elevated in both COL6-RD and DMD patients compared to unaffected (control) individuals. Patients with COL6-RD had widespread muscle atrophy, likely contributing to weakness. In contrast, patients with DMD revealed force deficits even in muscle groups with increased contractile areas.


Assuntos
Colágeno Tipo VI/genética , Contratura , Extremidade Inferior , Músculo Esquelético , Distrofias Musculares/congênito , Distrofia Muscular de Duchenne , Adulto , Contratura/diagnóstico por imagem , Contratura/metabolismo , Contratura/patologia , Contratura/fisiopatologia , Estudos Transversais , Feminino , Humanos , Extremidade Inferior/diagnóstico por imagem , Extremidade Inferior/patologia , Extremidade Inferior/fisiopatologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia
20.
Neurology ; 94(15): e1622-e1633, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32184340

RESUMO

OBJECTIVE: To quantify disease progression in individuals with Duchenne muscular dystrophy (DMD) using magnetic resonance biomarkers of leg muscles. METHODS: MRI and magnetic resonance spectroscopy (MRS) biomarkers were acquired from 104 participants with DMD and 51 healthy controls using a prospective observational study design with patients with DMD followed up yearly for up to 6 years. Fat fractions (FFs) in vastus lateralis and soleus muscles were determined with 1H MRS. MRI quantitative T2 (qT2) values were measured for 3 muscles of the upper leg and 5 muscles of the lower leg. Longitudinal changes in biomarkers were modeled with a cumulative distribution function using a nonlinear mixed-effects approach. RESULTS: MRS FF and MRI qT2 increased with DMD disease duration, with the progression time constants differing markedly between individuals and across muscles. The average age at half-maximal muscle involvement (µ) occurred 4.8 years earlier in vastus lateralis than soleus, and these measures were strongly associated with loss-of-ambulation age. Corticosteroid treatment was found to delay µ by 2.5 years on average across muscles, although there were marked differences between muscles with more slowly progressing muscles showing larger delay. CONCLUSIONS: MRS FF and MRI qT2 provide sensitive noninvasive measures of DMD progression. Modeling changes in these biomarkers across multiple muscles can be used to detect and monitor the therapeutic effects of corticosteroids on disease progression and to provide prognostic information on functional outcomes. This modeling approach provides a method to transform these MRI biomarkers into well-understood metrics, allowing concise summaries of DMD disease progression at individual and population levels. CLINICALTRIALSGOV IDENTIFIER: NCT01484678.


Assuntos
Biomarcadores/análise , Perna (Membro)/fisiopatologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Adolescente , Corticosteroides/metabolismo , Corticosteroides/farmacologia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Perna (Membro)/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/tratamento farmacológico , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa