Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(7): 4230-4239, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33586719

RESUMO

We report the evolution of the thermoelectric and mechanical properties of n-type SnSe obtained by iodine doping at the Se site. The thermoelectric performance of n-type SnSe is detailed in the temperature range starting from 150 K ≤ T ≤ 700 K. The power factor of 0.25% iodine doped SnSe is found to be 0.33 mW m-1 K-2 at 700 K, comparable to that of the other monovalent doped n-type SnSe. The temperature-dependent electrical conductivity of the undoped and iodine doped SnSe samples is corroborated by using the adiabatic small polaron hopping model. A very low value of thermal conductivity, 0.62 W m-1 K-1, is obtained at 300 K and is comparable to that of SnSe single crystals. The low thermal conductivity of n-type polycrystalline SnSe is understood by taking into account the anharmonic phonon vibrations induced by the incorporation of heavy iodine atoms at the Se sites as well as the structural hierarchy of the compound. Besides, iodine doping is found to improve the reduced Young's modulus and hardness values of SnSe, which is highly desirable for thermoelectric device applications.

2.
ACS Appl Mater Interfaces ; 15(16): 20175-20190, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37067866

RESUMO

Due to natural abundance, low cost, and compatibility with sustainable green technology, Mg3Sb2-based Zintl compounds are comprehensively explored as potential thermoelectric materials for near-room temperature applications. The effective use of these materials in thermoelectric devices requires both p and n-type Mg3Sb2 having comparable thermoelectric efficiency. However, p-type Mg3Sb2 has inferior thermoelectric efficiency efficiency compared to its n-type counterpart due to low electrical conductivity (∼103Sm-1). Here, we show that codoping of monovalent atoms (Li-Ag, and Na-Ag) at the Mg site of Mg3Sb2 produces a synergistic effect and boosts the electrical conductivity, which enhances the thermoelectric properties of p-type Mg3Sb2. While, Ag prefers to occupy the Mg2 site, Li and Na are favorable at the Mg1 site of Mg3Sb2 lattice. Compared to Li-Ag codoping, Na-Ag codoping in Mg3Sb2 is found to be more effective for increasing the charge carrier concentration and significantly augmenting the electrical conductivity. The dominance of the three-phonon scattering mechanism in Li and Li-Ag doped Mg3Sb2 and the four-phonon scattering process for the Na and Na-Ag doped Mg3Sb2 are confirmed. Due to the simultaneous increase in electrical conductivity and decrease in thermal conductivity, the zT value ∼0.8 at 675 K achieved for Mg2.975Na0.02Ag0.005Sb2 is the highest value among p-type Mg3Sb2. Our work shows a constructive approach to enhance the zT of p-type Mg3Sb2 via monovalent atoms codoping at the Mg sites.

3.
ACS Appl Mater Interfaces ; 14(45): 51084-51095, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36314554

RESUMO

The advantage of secondary-phase induced carrier filtering on the thermoelectric properties has paved the way for developing cost-effective, highly efficient thermoelectric materials. Here, we report a very high thermoelectric figure-of-merit of skutterudite nanocomposites achieved by tailoring interface carrier filtering. The single-filled skutterudite nanocomposites are prepared by dispersing rare-earth oxides nanoparticles (Yb2O3, Sm2O3, La2O3) in the skutterudite (Dy0.4Co3.2Ni0.8Sb12) matrix. The nanoparticles/skutterudite interfaces act as efficient carrier filters, thereby significantly enhancing the Seebeck coefficient without compromising the electrical conductivity. As a result, the highest power factor of ∼6.5 W/mK2 is achieved in the skutterudite nanocomposites. The nonuniform strain distribution near the nanoparticles due to the local lattice misfit and concentration fluctuations affect the heat carriers and thereby reduce the lattice thermal conductivity. Moreover, the three-dimensional atom probe analysis reveals the formation of Ni-rich grain boundaries in the skutterudite matrix, which also facilitates the reduction of lattice thermal conductivity. Both the factors, i.e., the reduction in lattice thermal conductivity and the enhancement of the power factor, lead to an enormous increase in ZT up to ∼1.84 at 723 K and an average ZT of about 1.56 in the temperature range from 523 to 723 K, the highest among the single-filled skutterudites reported so far.

4.
ACS Omega ; 6(5): 3900-3909, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585769

RESUMO

We report a systematic investigation of the microstructure and thermoelectric properties of refractory element-filled nanostructured Co4Sb12 skutterudites. The refractory tantalum (Ta) metal-filled Co4Sb12 samples (Ta x Co4Sb12 (x = 0, 0.4, 0.6, and 0.8)) are synthesized using a solid-state synthesis route. All the samples are composed of a single skutterudite phase. Meanwhile, nanometer-sized equiaxed grains are present in the Ta0.2Co4Sb12 and Ta0.4Co4Sb12 samples, and bimodal distributions of equiaxed grains and elongated grains are observed in Ta0.6Co4Sb12 and Ta0.8Co4Sb12 samples. The dominant carrier type changes from electrons (n-type) to holes (p-type) with an increase in Ta concentration in the samples. The power factor of the Ta0.6Co4Sb12 sample is increased to 2.12 mW/mK2 at 623 K due to the 10-fold reduction in electrical resistivity. The lowest lattice thermal conductivity observed for Ta0.6Co4Sb12 indicates the rattling action of Ta atoms and grain boundary scattering. Rietveld refinement of XRD data and the analysis of lattice thermal conductivity data using the Debye model confirm that Ta occupies at the voids as well as the Co site. The figure of merit (ZT) of ∼0.4 is obtained in the Ta0.6Co4Sb12 sample, which is comparable to single metal-filled p-type skutterudites reported to date. The thermoelectric properties of the refractory Ta metal-filled skutterudites might be useful to achieve both n-type and p-type thermoelectric legs using a single filler atom and could be one of replacements of the rare earth-filled skutterudites with improved thermoelectric properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa