RESUMO
We investigated the trophic structure and habitat use of ten cetacean species occurring in the oceanic waters of the western South Atlantic using naturally-occurring stable isotopes. We analysed δ15N in individual amino acids (AA) to estimate cetacean trophic position (TP) and to evaluate the spatial differences in baseline δ15N (source AAs). We adjusted cetacean bulk-skin δ13C and δ15N for the effect of trophic level using their estimated TPs, obtaining δ13CAdjusted and δ15NAdjusted, respectively. These values were applied to estimate the overlap in the niche areas of cetacean baseline sources. Our analyses showed spatial segregation between Steno bredanensis and the remaining odontocetes, and the high δ15N in this species reflects its occurrence in neritic waters of the southern region. The highest TPs were observed in Physeter macrocephalus, Stenella attenuata and Globicephala melas, while the lowest TPs were reported for S. longirostris, S. clymene and Orcinus orca. Overall, source AA-δ15N showed similar patterns as those of baseline-δ15N (zooplankton) and were higher in species sampled in the southernmost region of the study area (e.g., Delphinus delphis). Isotopic niche areas estimated using δ13CAdjusted and δ15NAdjusted suggested high overlap in foraging area between S. frontalis and Tursiops truncatus, with the latter occupying a higher TP. Our analyses of δ15N in AAs provide a unique insight into the trophic ecology, forage areas and spatial segregation in resource use among these cetacean populations. Additionally, our work provides AA-δ15N baseline for future studies on the trophic ecology and habitat use of marine organisms in the western South Atlantic.
Assuntos
Aminoácidos , EcologiaRESUMO
Great white pelicans (Pelecanus onocrotalus) exhibit life-history parameters and ecological traits thought to be associated with social learning, and advanced cognitive processing more generally. In this study we investigated whether this species can acquire novel behavior socially in a foraging context. Birds from the test group watched a trained conspecific opening an opaque box containing a food reward by using its beak, whereas the control group had no demonstrator but saw the box for an equivalent time span. Individuals from both groups were subsequently allowed access to the box. Subjects of the test group performed significantly better than the control group. This is the first experimental evidence of social learning in a cooperatively hunting bird. Further studies are needed in order to shed light on the factors favoring the evolution of this capacity, by testing different pelican species that vary in their ecology.
Assuntos
Aprendizado Social , Animais , Aves , AlimentosRESUMO
We analyzed δ13C and δ15N values in different tooth portions (Growth Layer Groups, GLGs) of franciscanas, Pontoporia blainvillei, to investigate their effect on whole tooth (WT) isotopic values and the implications for dietary estimates. Tooth portions included the dentin deposited during the prenatal development (PND), the first year of life (GLG1) deposited during the nursing period and the central part of the tooth with no distinction amongst subsequent GLGs (Center). Isotopic mixing models estimating the contribution of PND, GLG1 and Center to WT showed that GLG1 has a strong effect on WT isotope values in juveniles, while Center only starts to affect WT isotopic values from age four. Isotopic mixing models estimating prey contribution to the diet of juveniles using WT vs Center tooth portions significantly differed in dietary outputs, demonstrating that GLG1 influence on WT isotope values affects dietary estimates in young franciscanas. As the small tooth size and narrowness of the last GLGs hinder the analysis of individual layers, we recommend excluding GLG1 in studies based on teeth isotope composition in franciscanas and caution when interpreting isotopic values from the WT of other small cetaceans.