RESUMO
This manuscript deals with the detection of internal cracks and defects in aeronautical fibreglass structures. In technical practice, it is problematic to accurately determine the service life or MTBF (Mean Time Between Failure) of composite materials by the methods used in metallic materials. The problem is mainly the inhomogeneous and anisotropic structure of composites, possibly due to the differences in the macrostructure during production, production processes, etc. Diagnostic methods for detecting internal cracks and damage are slightly different, and in practice, it is more difficult to detect defects using non-destructive testing (NDT). The article deals with the use of Radio frequency identification (RFID) technology integrated in the fibreglass laminates of aircraft structures to detect internal defects based on deformation behaviour of passive RFID tag antenna. The experiments proved the potential of using RFID technology in fibreglass composite laminates when using tensile tests applied on specimens with different structural properties. Therefore, the implementation of passive RFID tags into fibreglass composite structures presents the possibilities of detecting internal cracks and structural health monitoring. The result and conclusion of the basic research is determination of the application conditions for our proposed technology in practice. Moreover, the basic research provides recommendations for the applied research in terms of the use in real composite airframe structures.
Assuntos
Dispositivo de Identificação por Radiofrequência , PesquisaRESUMO
A progressive type of tungsten-doped DLC coating was applied to a quenched and tempered 100Cr6 steel with the aim to improve the wear and corrosion properties in simulated seawater conditions and to compare the performance to conventional DLC coating. Tungsten doping caused a shift of the corrosion potential (Ecorr) to a lower negative value of -172 mV, while the conventional DLC exhibited an Ecorr of -477 mV. In dry conditions, the W-DLC coefficient of friction is slightly higher than that of the conventional DLC (0.187 for the W-DLC vs. 0.137 for the DLC), but in cases of a saltwater environment, this difference becomes almost negligible (0.105 for the W-DLC vs. 0.076 for the DLC). The conventional DLC coating also started to show marks of deterioration when exposed to a combination of wear in a corrosive environment, while the W-DLC layer still maintained its integrity.
RESUMO
This paper investigates the rate of transformation induced plasticity in TRIP steel (TRansformation-Induced Plasticity) after plastic straining by the use of Barkhausen noise emission. The samples were subjected to a variable degree of plastic straining and analysed by the use of conventional techniques such SEM, XRD, as well as microhardness in order to investigate residual stress and microstructural alterations initiated by the uniaxial tensile test. Barkhausen noise emission is analysed as a function of plastic straining as well as in the direction of the exerted load and interpreted with respect to the aforementioned microstructure and stress alterations. It was found that Barkhausen noise markedly decreases along with increasing plastic straining, up to 20%, followed by a strain region in which the evolution of Barkhausen noise reaches saturation. Samples after the tensile test exhibited marked magnetic anisotropy since the Barkhausen noise emission in the direction perpendicular to the tensile stress remained less affected. Apart from the effective value of Barkhausen noise, the Barkhausen noise envelopes were also analysed.
RESUMO
Fatigue tests were performed on the AZ91 cast alloy to identify the mechanisms of the fatigue crack initiation. In different fatigue regions, different mechanisms were observed. In the low and high cycle fatigue regions, slip markings formation accompanied with Mg17Al12 particles cracking were observed. Slip markings act as the fatigue crack initiation sites. The size and number of slip markings decreased with decreased stress amplitude applied. When slip markings formation was suppressed due to low stress amplitude, particle cracking became more important and the cracks continued to grow through the particle/solid solution interface. The change of the fatigue crack initiation mechanisms led the S-N curve to shift to the higher number of cycles to the fracture, demonstrated by its stepwise character. A lower fatigue limit of 60 MPa was determined at 20 kHz for 2 × 109 cycles compared to the 80 MPa determined at 60 Hz for 1 × 107 cycles.
RESUMO
Ultrasonic fatigue testing is one of a few methods which allow investigating fatigue properties in the ultra-high cycle region. The method is based on exposing the specimen to longitudinal vibrations on its resonance frequency close to 20 kHz. With use of this method, it is possible to significantly decrease the time required for the test, when compared to conventional testing devices usually working at frequencies under 200 Hz. It is also used to simulate loading of material during operation in high speed conditions, such as those experienced by components of jet engines or car turbo pumps. It is necessary to operate only in the high and ultra-high cycle region, due to the possibility of extremely high deformation rates, which can have a significant influence on the test results. Specimen shape and dimensions have to be carefully selected and calculated to fulfill the resonance condition of the ultrasonic system; thus, it is not possible to test the full components or specimens of arbitrary shape. Before each test, it is necessary to harmonize the specimen with the frequency of the ultrasonic system to compensate for deviations of the real shape from the ideal one. It is not possible to run a test until a total fracture of the specimen, since the test is automatically terminated after initiation and propagation of the crack to a certain length, when the stiffness of the system changes enough to shift the system out of the resonance frequency. This manuscript describes the process of evaluation of materials' fatigue properties at high-frequency ultrasonic fatigue loading with use of mechanical resonance at a frequency close to 20 kHz. The protocol includes a detailed description of all steps required for a correct test, including specimen design, stress calculation, harmonizing with the resonance frequency, performing the test, and final static fracture.