Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
New Phytol ; 234(3): 776-782, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133656

RESUMO

The traditional separation between primary producers (autotrophs) and consumers (heterotrophs) at the base of the marine food web is being increasingly replaced by the paradigm that mixoplankton, planktonic protists with the nutritional ability to use both phago(hetero)trophy and photo(auto)trophy to access energy are widespread globally. Thus, many 'phytoplankton' eat, while 50% of 'protozooplankton' also perform photosynthesis. Mixotrophy may enhance primary production, biomass transfer to higher trophic levels and the efficiency of the biological pump to sequester atmospheric CO2 into the deep ocean. Although this view is gaining traction, science lacks a tool to quantify the relative contributions of autotrophy and heterotrophy in planktonic protists. This hinders our understanding of their impacts on carbon cycling within marine pelagic ecosystems. It has been shown that the hydrogen (H) isotopic signature of lipids is uniquely sensitive to heterotrophy relative to autotrophy in plants and bacteria. Here, we explored whether it is also sensitive to the trophic status in protists. The new understanding of H isotope signature of lipid biomarkers suggests it offers great potential as a novel tool for quantifying the prevalence of mixotrophy in diverse marine microorganisms and thus for investigating the implications of the 'mixoplankton' paradigm.


Assuntos
Ecossistema , Processos Autotróficos , Biomarcadores , Deutério , Processos Heterotróficos
2.
J Fish Biol ; 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35099820

RESUMO

Seasonal differences in the availability of resources potentially result in the food web architecture also varying through time. Stable isotope analyses are a logistically simple but powerful tool for inferring trophic interactions and food web structure, but relatively few studies quantify seasonal variations in the food web structure or nutrient flux across multiple trophic levels. We determined the temporal dynamics in stable isotope compositions (carbon, nitrogen and sulphur) of a fish community from a highly seasonal, temperate estuary sampled monthly over a full annual cycle. Sulphur isotope values in fish tissues discriminated among consumers exploiting pelagic and benthic resources but showed no seasonal variation. This implied limited change in the relative consumption of pelagic and benthic resources by the fish community over the study period despite major seasonal changes in phytoplankton biomass. Conversely, carbon and nitrogen isotope values exhibited seasonality marked by the commencement of the spring phytoplankton bloom and peak chlorophyll concentration, with δ13 C values following expected trends in phytoplankton growth physiology and variation in δ15 N values coinciding with changes in major nitrogen sources to plankton between nitrate and ammonium. Isotope shifts in fish muscle were detected within 2 weeks of the peak spring phytoplankton bloom, suggesting a rapid trophic transfer of carbon and nitrogen along food chains within the estuarine food web during periods of high production. Therefore we caution against the assumption that temporal averaging effectively dampens isotopic variability in tissues of higher trophic-level animals in highly dynamic ecosystems, such as temperate estuaries. This work highlights how stable isotope analyses can be combined with environmental data to gain a broader understanding of ecosystem functioning, while emphasising the need for temporally appropriate sampling in stable isotope-based studies.

3.
J Fish Biol ; 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854485

RESUMO

Patterns of feeding and growth of Atlantic salmon Salmo salar L. in the marine environment are critical to understanding how observed declines in recruitment may reflect warming or other oceanic drivers. The isotopic composition of scales can provide insight into differences in marine feeding location and possibly temperature regime. The authors used archived scale samples to measure δ13 C and δ15 N deposited in the scales of one sea-winter (1SW) salmon during their last season of growth at sea before they returned to five Irish rivers. δ13 C values were related statistically to observed salmon body condition (Fulton's K), and fish with higher δ13 C values tended to show significantly better condition. In contrast, δ15 N values were negatively related to body condition. There was no important effect on condition of length at smolt migration, and the effect of duration of marine residence varied among rivers. It is likely that δ13 C values partly reflected ambient ocean temperature and recent marine feeding environment before return migration, such that the observed relationship between higher δ13 C values and increased body condition may express an advantage for adult fish feeding in warmer, potentially closer, waters. If greater body condition influences fitness, then a changing temperature regime in the Northeast Atlantic may drive shifts in salmon survival and reproduction. This study provides evidence that there is spatial and trophic variation at sea between salmon from rivers of origin that are located relatively close to each other, with potential consequences for body condition and, consequently, fitness and life history; this suggests that salmon populations from geographically proximate rivers within regions may exhibit differential responses to ocean-scale climatic changes across the Northeast Atlantic.

4.
Rapid Commun Mass Spectrom ; 34(18): e8851, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32492222

RESUMO

RATIONALE: The presence of lipids in animal tissues can influence the interpretation of stable isotope data, particularly in lipid-rich tissues such as the skin and muscle of marine mammals. The traditionally employed chloroform-methanol delipidation protocol has the potential to alter δ15 N values in proteinaceous tissues. Our objective was to determine whether the use of cyclohexane could be an alternative extraction method, effectively removing lipids without altering δ15 N values. METHODS: Kidney, liver, muscle, and skin samples were collected from beach-cast Sowerby's beaked whales (Mesoplodon bidens). Control subsamples were processed without delipidation extraction, and duplicate subsamples were extracted with either chloroform-methanol or cyclohexane. δ13 C, δ15 N, and C:N values were determined by continuous-flow elemental analysis isotope ratio mass spectrometry. Paired Wilcoxon tests were used to evaluate the change in isotope ratios after extraction, and unpaired Wilcoxon tests were used to evaluate differences in isotope ratios between extractions. RESULTS: Use of cyclohexane is an effective delipidation technique for tissues with low and moderate lipid content. Chemical delipidation influenced δ15 N values; extracted samples generally showed an increase in δ15 N values which varied from 0.0‰ to 1.7‰. Chloroform-methanol extraction resulted in alterations to δ15 N values greater than the analytical precision for all analyzed tissues. Changes to δ15 N values after cyclohexane extraction were at or near the analytical precision for liver and muscle but greater than the analytical precision for kidney and skin. CONCLUSIONS: We recommend processing duplicate subsamples for stable isotope analysis, one with and one without extraction, in order to obtain accurate values for each isotope ratio. Prolonged chemical extractions are not necessary to effectively remove lipids. When samples are limited, we suggest using cyclohexane for tissues with low or moderate lipid content, and chloroform-methanol for lipid-rich tissues.


Assuntos
Isótopos de Carbono/análise , Fracionamento Químico/métodos , Lipídeos/isolamento & purificação , Isótopos de Nitrogênio/análise , Baleias/fisiologia , Animais , Clorofórmio/química , Cicloexanos/química , Rim/química , Fígado/química , Espectrometria de Massas , Metanol/química , Escócia
5.
J Anim Ecol ; 88(2): 290-301, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30426504

RESUMO

Taylor's power law (TPL) describes the relationship between the mean and variance in abundance of populations, with the power law exponent considered a measure of aggregation. However, the usefulness of TPL exponents as an ecological metric has been questioned, largely due to its apparent ubiquity in various complex systems. The aim of this study was to test whether TPL exponents vary systematically with potential drivers of animal aggregation in time and space and therefore capture useful ecological information of the system of interest. We derived community TPL exponents from a long-term, standardised and spatially dense data series of abundance and body size data for a strongly size-structured fish community in the North Sea. We then compared TPL exponents between regions of contrasting environmental characteristics. We find that, in general, TPL exponents vary more than expected under random conditions in the North Sea for size-based populations compared to communities considered by species. Further, size-based temporal TPL exponents are systematically higher (implying more temporally aggregated distributions) along hydrographic boundaries. Time series of size-based spatial TPL exponents also differ between hydrographically distinct basins. These findings support the notion that TPL exponents contain ecological information, capturing community spatio-temporal dynamics as influenced by external drivers.


Assuntos
Peixes , Modelos Biológicos , Animais , Ecologia , Ecossistema , Mar do Norte , Dinâmica Populacional
6.
J Fish Biol ; 94(6): 981-992, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30746699

RESUMO

In this paper, we revisit the state of deep-water fisheries to the west of the British Isles and aim to provide an overview on the key drivers behind community changes along continental margins. The deep-water fisheries to the west of the British Isles that extend from the shelf-slope break down to the lower slope and along banks and seamounts of the Rockall Basin, mainly target blue ling Molva dypterygia, roundnose grenadier Coryphaenoides rupestris, orange roughy Hoplostethus atlanticus, with by-catches of black scabbardfish Aphanopus carbo and tusk Brosme brosme. These fishing grounds experienced a long period of exhaustive exploitation until the early 2000s, but subsequently the implementation of management strategies has helped to relieve excessive fishing pressure. It is widely accepted that a better understanding of the long-term implications of disturbance is needed to understand patterns in deep-water communities and what sustainable use and exploitation of resources might look like in this context.


Assuntos
Ecossistema , Pesqueiros , Peixes/fisiologia , Animais , Oceano Atlântico , Conservação dos Recursos Naturais
7.
Mar Pollut Bull ; 201: 116218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38531207

RESUMO

Human activity has led to increased concentrations of mercury (Hg) in the world's oceans. Mercury can bioaccumulate and biomagnify in animal tissues via trophic transfer, thus, becoming most pronounced in larger and older predators. Here, we measured Hg concentrations and their relationship with stable isotopes-based proxies of trophic level (δ13C and δ15N values) in multiple tissues of Mustelus spp. from the Mediterranean Sea. We found higher Hg concentrations in muscle than in liver and fin tissues. The relationship between Hg concentrations and δ15N values in muscle suggested repeated foraging for low trophic level and Hg-poor prey, and biomagnification of Hg at higher trophic levels. Seasonal variations in δ13C values could indicate shifts in primary production sources and/or in local prey availability. The HBVSe index suggested no risk to human health, however the safe meal limit recommendations are 4.5 and 2.2 portions per month for adults and children, respectively.


Assuntos
Elasmobrânquios , Mercúrio , Poluentes Químicos da Água , Animais , Criança , Humanos , Mercúrio/análise , Cadeia Alimentar , Bioacumulação , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes
8.
Ecol Evol ; 13(2): e9790, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36789339

RESUMO

Information on resource use and trophic dynamics of marine predators is important for understanding their role in ecosystem functioning and predicting population-level responses to environmental change. Where separate populations experience different local environmental conditions, geographic variability in their foraging ecology is often expected. Within populations, individuals also vary in morphology, physiology, and experience, resulting in specialization in resource use. In this context, isotopic compositions of incrementally grown tissues such as keratinous hairs offer a valuable opportunity to study long-term variation in resource and habitat use. We investigated the trophic ecology of female Cape fur seals (Arctocephalus pusillus pusillus) using carbon and nitrogen isotopic compositions of serially sampled whiskers collected at four breeding sites along the coast of South Africa. Drawing on over 900 isotopic measurements, we assessed geographic variability in isotopic niche width between colonies and the degree of individual specialization. We found slight, but clear geographic differences in isotopic ratios and isotopic niche widths, seemingly related to ecological setting, with niche widths being proportional to the area of available shelf and shelf-slope habitat surrounding the colony. We further identified periodic oscillations in isotopic ratios, which likely reflect temporal patterns in foraging distribution and prey type, linked to shifts in the availability of prey resources and their interaction with constraints on individual females throughout their breeding cycle. Finally, individual specialization indices revealed that each of the study populations contain specialist individuals that utilize only a small subset of the total population niche width. The degree of individual specialization was, however, not consistent across colonies and may reflect an interactive influence between density-dependent effects and habitat heterogeneity. Overall, this study provides important information on the trophic ecology of Cape fur seals breeding in South Africa and highlights the need to consider geographic and individual variability when assessing the foraging ecology of marine predators.

9.
Nat Commun ; 14(1): 7379, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012173

RESUMO

Changing environmental temperatures impact the physiological performance of fishes, and consequently their distributions. A mechanistic understanding of the linkages between experienced temperature and the physiological response expressed within complex natural environments is often lacking, hampering efforts to project impacts especially when future conditions exceed previous experience. In this study, we use natural chemical tracers to determine the individual experienced temperatures and expressed field metabolic rates of Atlantic bluefin tuna (Thunnus thynnus) during their first year of life. Our findings reveal that the tuna exhibit a preference for temperatures 2-4 °C lower than those that maximise field metabolic rates, thereby avoiding temperatures warm enough to limit metabolic performance. Based on current IPCC projections, our results indicate that historically-important spawning and nursery grounds for bluefin tuna will become thermally limiting due to warming within the next 50 years. However, limiting global warming to below 2 °C would preserve habitat conditions in the Mediterranean Sea for this species. Our approach, which is based on field observations, provides predictions of animal performance and behaviour that are not constrained by laboratory conditions, and can be extended to any marine teleost species for which otoliths are available.


Assuntos
Ecossistema , Atum , Animais , Atum/fisiologia , Oceano Atlântico , Aquecimento Global , Mar Mediterrâneo
10.
Rapid Commun Mass Spectrom ; 26(23): 2745-54, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23124665

RESUMO

RATIONALE: Stable isotope values (δ(13)C and δ(15)N) of darted skin and blubber biopsies can shed light on habitat use and diet of cetaceans, which are otherwise difficult to study. Non-dietary factors affect isotopic variability, chiefly the depletion of (13)C due to the presence of (12)C-rich lipids. The efficacy of post hoc lipid-correction models (normalization) must be tested. METHODS: For tissues with high natural lipid content (e.g., whale skin and blubber), chemical lipid extraction or normalization is necessary. C:N ratios, δ(13)C values and δ(15)N values were determined for duplicate control and lipid-extracted skin and blubber of fin (Balaenoptera physalus), humpback (Megaptera novaeangliae) and minke whales (B. acutorostrata) by continuous-flow elemental analysis isotope ratio mass spectrometry (CF-EA-IRMS). Six different normalization models were tested to correct δ(13)C values for the presence of lipids. RESULTS: Following lipid extraction, significant increases in δ(13)C values were observed for both tissues in the three species. Significant increases were also found for δ(15)N values in minke whale skin and fin whale blubber. In fin whale skin, the δ(15)N values decreased, with no change observed in humpback whale skin. Non-linear models generally out-performed linear models and the suitability of models varied by species and tissue, indicating the need for high model specificity, even among these closely related taxa. CONCLUSIONS: Given the poor predictive power of the models to estimate lipid-free δ(13)C values, and the unpredictable changes in δ(15)N values due to lipid-extraction, we recommend against arithmetical normalization in accounting for lipid effects on δ(13)C values for balaenopterid skin or blubber samples. Rather, we recommend that duplicate analysis of lipid-extracted (δ(13)C values) and non-treated tissues (δ(15)N values) be used.


Assuntos
Tecido Adiposo/química , Isótopos de Carbono/análise , Lipídeos/isolamento & purificação , Isótopos de Nitrogênio/análise , Pele/química , Baleias/metabolismo , Algoritmos , Animais , Espectrometria de Massas
11.
R Soc Open Sci ; 7(6): 200231, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32742690

RESUMO

Science provides a method to learn about the relationships between observed patterns and the processes that generate them. However, inference can be confounded when an observed pattern cannot be clearly and wholly attributed to a hypothesized process. Over-reliance on traditional single-hypothesis methods (i.e. null hypothesis significance testing) has resulted in replication crises in several disciplines, and ecology exhibits features common to these fields (e.g. low-power study designs, questionable research practices, etc.). Considering multiple working hypotheses in combination with pre-data collection modelling can be an effective means to mitigate many of these problems. We present a framework for explicitly modelling systems in which relevant processes are commonly omitted, overlooked or not considered and provide a formal workflow for a pre-data collection analysis of multiple candidate hypotheses. We advocate for and suggest ways that pre-data collection modelling can be combined with consideration of multiple working hypotheses to improve the efficiency and accuracy of research in ecology.

12.
Commun Biol ; 2: 24, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30675522

RESUMO

Field metabolic rate (FMR) is key to understanding individual and population-level responses to environmental changes, but is challenging to measure in field conditions, particularly in aquatic environments. Here we show that FMR can be estimated directly from the isotopic composition of carbon in fish otoliths (δ13Coto). We describe the relationship between δ13Coto values and oxygen consumption rate, and report results from laboratory experiments relating individual-level measurements of oxygen consumption rates to δ13Coto values in Atlantic cod (Gadus morhua). We apply our new δ13Coto metabolic proxy to existing δ13Coto data from wild cod and four deepwater fish species to test the validity of inferred FMR estimates. The δ13Coto metabolic proxy offers a new approach to study physiological ecology in free-ranging wild fishes. Otolith-based proxies for FMR are particularly promising as they allow retrospective assessment of time-integrated, individual-level FMR throughout an individual fish's life history.


Assuntos
Carbonatos/metabolismo , Metabolismo Energético , Peixes/metabolismo , Membrana dos Otólitos/metabolismo , Algoritmos , Animais , Modelos Biológicos , Consumo de Oxigênio
13.
Mov Ecol ; 7: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695919

RESUMO

BACKGROUND: Natural environments are dynamic systems with conditions varying across years. Higher trophic level consumers may respond to changes in the distribution and quality of available prey by moving to locate new resources or by switching diets. In order to persist, sympatric species with similar ecological niches may show contrasting foraging responses to changes in environmental conditions. However, in marine environments this assertion remains largely untested for highly mobile predators outside the breeding season because of the challenges of quantifying foraging location and trophic position under contrasting conditions. METHOD: Differences in overwinter survival rates of two populations of North Sea seabirds (Atlantic puffins (Fratercula arctica) and razorbills (Alca torda)) indicated that environmental conditions differed between 2007/08 (low survival and thus poor conditions) and 2014/15 (higher survival, favourable conditions). We used a combination of bird-borne data loggers and stable isotope analyses to test 1) whether these sympatric species showed consistent responses with respect to foraging location and trophic position to these contrasting winter conditions during periods when body and cheek feathers were being grown (moult) and 2) whether any observed changes in moult locations and diet could be related to the abundance and distribution of potential prey species of differing energetic quality. RESULTS: Puffins and razorbills showed divergent foraging responses to contrasting winter conditions. Puffins foraging in the North Sea used broadly similar foraging locations during moult in both winters. However, puffin diet significantly differed, with a lower average trophic position in the winter characterised by lower survival rates. By contrast, razorbills' trophic position increased in the poor survival winter and the population foraged in more distant southerly waters of the North Sea. CONCLUSIONS: Populations of North Sea puffins and razorbills showed contrasting foraging responses when environmental conditions, as indicated by overwinter survival differed. Conservation of mobile predators, many of which are in sharp decline, may benefit from dynamic spatial based management approaches focusing on behavioural changes in response to changing environmental conditions, particularly during life history stages associated with increased mortality.

14.
PeerJ ; 7: e7912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637141

RESUMO

The spatial ecology of rare, migratory oceanic animals is difficult to study directly. Where incremental tissues are available, their chemical composition can provide valuable indirect observations of movement and diet. Interpreting the chemical record in incremental tissues can be highly uncertain, however, as multiple mechanisms interact to produce the observed data. Simulation modeling is one approach for considering alternative hypotheses in ecology and can be used to consider the relative likelihood of obtaining an observed record under different combinations of ecological and environmental processes. Here we show how a simulation modeling approach can help to infer movement behaviour based on stable carbon isotope profiles measured in incremental baleen tissues of a blue whale (Balaenoptera musculus). The life history of this particular specimen, which stranded in 1891 in the UK, was selected as a case study due to its cultural significance as part of a permanent display at the Natural History Museum, London. We specifically tested whether measured variations in stable isotope compositions across the analysed baleen plate were more consistent with residency or latitudinal migrations. The measured isotopic record was most closely reproduced with a period of residency in sub-tropical waters for at least a full year followed by three repeated annual migrations between sub-tropical and high latitude regions. The latitudinal migration cycle was interrupted in the year prior to stranding, potentially implying pregnancy and weaning, but isotopic data alone cannot test this hypothesis. Simulation methods can help reveal movement information coded in the biochemical compositions of incremental tissues such as those archived in historic collections, and provides context and inferences that are useful for retrospective studies of animal movement, especially where other sources of individual movement data are sparse or challenging to validate.

15.
PeerJ ; 6: e4883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888128

RESUMO

Incrementally grown, metabolically inert tissues such as fish otoliths provide biochemical records that can used to infer behavior and physiology throughout the lifetime of the individual. Organic tissues are particularly useful as the stable isotope composition of the organic component can provide information about diet, trophic level and location. Unfortunately, inert, incrementally grown organic tissues are relatively uncommon. The vertebrate eye lens, however, is formed via sequential deposition of protein-filled fiber cells, which are subsequently metabolically inert. Lenses therefore have the potential to serve as biochemical data recorders capturing life-long variations in dietary and spatial ecology. Here we review the state of knowledge regarding the structure and formation of fish eye lenses in the context of using lens tissue for retrospective isotopic analysis. We discuss the relationship between eye lens diameter and body size, describe the successful recovery of expected isotopic gradients throughout ontogeny and between species, and quantify the isotopic offset between lens protein and white muscle tissue. We show that fish eye lens protein is an attractive host for recovery of stable isotope life histories, particularly for juvenile life stages, and especially in elasmobranchs lacking otoliths, but interpretation of lens-based records is complicated by species-specific uncertainties associated with lens growth rates.

16.
Philos Trans R Soc Lond B Biol Sci ; 371(1691): 20150223, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26977063

RESUMO

The fossil record provides the only direct evidence of temporal trends in biodiversity over evolutionary timescales. Studies of biodiversity using the fossil record are, however, largely limited to discussions of taxonomic and/or morphological diversity. Behavioural and physiological traits that are likely to be under strong selection are largely obscured from the body fossil record. Similar problems exist in modern ecosystems where animals are difficult to access. In this review, we illustrate some of the common conceptual and methodological ground shared between those studying behavioural ecology in deep time and in inaccessible modern ecosystems. We discuss emerging ecogeochemical methods used to explore population connectivity and genetic drift, life-history traits and field metabolic rate and discuss some of the additional problems associated with applying these methods in deep time.


Assuntos
Biodiversidade , Peixes/classificação , Oceanos e Mares , Distribuição Animal , Migração Animal , Animais , Ecossistema , Metabolismo Energético , Peixes/genética , Peixes/fisiologia , Fósseis , Fluxo Gênico , Membrana dos Otólitos/química , Oligoelementos/análise , Reino Unido
17.
PeerJ ; 4: e2387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27672494

RESUMO

Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

18.
PLoS One ; 9(10): e108539, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279667

RESUMO

Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values did not fully match [ corrected]. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified.


Assuntos
Meio Ambiente , Peixes/fisiologia , Membrana dos Otólitos/fisiologia , Animais , Mar do Norte
19.
PLoS One ; 8(3): e58146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505462

RESUMO

Human exposure to lead is a substantial public health hazard worldwide and is particularly problematic in the Republic of South Africa given the country's late cessation of leaded petrol. Lead exposure is associated with a number of serious health issues and diseases including developmental and cognitive deficiency, hypertension and heart disease. Understanding the distribution of lifetime lead burden within a given population is critical for reducing exposure rates. Femoral bone from 101 deceased adult males living in urban Transvaal Province (now Gauteng Province), South Africa between 1960 and 1998 were analyzed for lead concentration by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Of the 72 black and 29 white individuals sampled, chronic lead exposure was apparent in nearly all individuals. White males showed significantly higher median bone lead concentration (ME = 10.04 µg·g(-1)), than black males (ME = 3.80 µg·g(-1)) despite higher socioeconomic status. Bone lead concentration covaries significantly, though weakly, with individual age. There was no significant temporal trend in bone lead concentration. These results indicate that long-term low to moderate lead exposure is the historical norm among South African males. Unexpectedly, this research indicates that white males in the sample population were more highly exposed to lead.


Assuntos
Exposição Ambiental , Chumbo/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/química , Humanos , Masculino , Pessoa de Meia-Idade , África do Sul , Adulto Jovem
20.
J Trace Elem Med Biol ; 27(4): 273-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23643248

RESUMO

A comprehensive review of the analytical literature revealed substantial under-representation of trace element concentrations in fish blood, particularly for marine species. We describe a simple dilution procedure to measure Li, Mg, K, Ca, Mn, Cu, Zn, Se, Rb, Sr, Ba and Pb concentrations in low volumes of blood plasma of adult plaice (Pleuronectes platessa) using high resolution-inductively coupled plasma-mass spectrometry (HR-ICP-MS). Captive male and female plaice (n = 18) were serially sampled for one year and samples collected outside of the spawning season (n = 157) used to estimate reference ranges for this species. Method accuracy was deemed satisfactory, based on its application to the analysis of a certified reference material. Precision was generally <3%, with the most conservative measure of precision being ≤10% for all elements except Pb (∼20%). This is the first study to analyse fish blood plasma by ICP-MS and includes some of the first reference ranges for trace element concentrations in fish blood.


Assuntos
Linguado/sangue , Metais Alcalinos/sangue , Metais Alcalinoterrosos/sangue , Oligoelementos/sangue , Animais , Feminino , Masculino , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa