RESUMO
The interactions between viruses and actin cytoskeleton have been widely studied. We showed that rotaviruses remodel microfilaments in intestinal cells and demonstrated that this was due to the VP4 spike protein. Microfilaments mainly occur in the apical domain of infected polarized enterocytes and favor the polarized apical exit of viral progeny. The present work aims at the identification of molecular determinants of actin-VP4 interactions. We used various deletion mutants of VP4 that were transfected into Cos-7 cells and analyzed interactions by immunofluorescence confocal microscopy. It has been established that the C-terminal part of VP4 is embedded within viral particles when rotavirus assembles. The use of specific monoclonal antibodies demonstrated that VP4 is expressed in different forms in infected cells: classically as spike on the outer layer of virus particles, but also as free soluble protein in the cytosol. The C terminus of free VP4 was identified as interacting with actin microfilaments. The VP4 actin binding domain is unable to promote microfilament remodeling by itself; the coiled-coil domain is also required in this process. This actin-binding domain was shown to dominate a previously identified peroxisomal targeting signal, located in the three last amino acids of VP4. The newly identified actin-binding domain is highly conserved in rotavirus strains from species A, B, and C, suggesting that actin binding and remodeling is a general strategy for rotavirus exit. This provides a novel mechanism of protein-protein interactions, not involving cell signaling pathways, to facilitate rotavirus exit.IMPORTANCE Rotaviruses are causal agents of acute infantile viral diarrhea. In intestinal cells, in vitro as well as in vivo, virus assembly and exit do not imply cell lysis but rely on an active process in which the cytoskeleton plays a major role. We describe here a novel molecular mechanism by which the rotavirus spike protein VP4 drives actin remodeling. This relies on the fact that VP4 occurs in different forms. Besides its structural function within the virion, a large proportion of VP4 is expressed as free protein. Here, we show that free VP4 possesses a functional actin-binding domain. This domain, in coordination with a coiled-coil domain, promotes actin cytoskeleton remodeling, thereby providing the capacity to destabilize the cell membrane and allow efficient rotavirus exit.
Assuntos
Actinas/química , Actinas/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Rotavirus/metabolismo , Animais , Sítios de Ligação , Células COS , Proteínas do Capsídeo/genética , Linhagem Celular , Chlorocebus aethiops , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Ligação Proteica , Domínios Proteicos , Rotavirus/química , Rotavirus/genéticaRESUMO
Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Lactococcus lactis/genética , Proteoma/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Células CACO-2 , Cromatografia Líquida , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Humanos , Intestinos/citologia , Intestinos/microbiologia , Lactococcus lactis/metabolismo , Lactococcus lactis/ultraestrutura , Microscopia Eletrônica , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Fragmentos de Peptídeos/análise , Plasmídeos , Probióticos/química , Proteólise , Proteoma/metabolismo , Espectrometria de Massas em Tandem , Tripsina/químicaRESUMO
Group A rotaviruses, members of the family Reoviridae, are a major cause of infantile acute gastroenteritis. The rotavirus genome consists of 11 dsRNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. It has been shown that some rearranged segments are preferentially encapsidated into viral progenies after serial passages in cell culture. Based on this characteristic, a reverse genetics system was used previously to introduce exogenous segment 7 rearrangements into an infectious rotavirus. This study extends this reverse genetics system to RNA segments 5 and 11. Transfection of exogenous rotavirus rearranged RNA segment 5 or 11 into cells infected with a WT helper rotavirus (bovine strain RF) resulted in subsequent gene rearrangements in the viral progeny. Whilst recombinant viruses were rescued with an exogenous rearranged segment 11, the exogenous segment was modified by a secondary rearrangement. The occurrence of spontaneous rearrangements of WT or exogenous segments is a major hindrance to the use of this reverse genetics approach.
Assuntos
Rearranjo Gênico/genética , RNA Viral/genética , Rotavirus/genética , Proteínas não Estruturais Virais/genética , Animais , Sequência de Bases , Células COS , Linhagem Celular , Galinhas , Chlorocebus aethiops , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Análise de Sequência de RNA , TransfecçãoRESUMO
OBJECTIVE: Gut microbiota metabolises bile acids (BA). As dysbiosis has been reported in inflammatory bowel diseases (IBD), we aim to investigate the impact of IBD-associated dysbiosis on BA metabolism and its influence on the epithelial cell inflammation response. DESIGN: Faecal and serum BA rates, expressed as a proportion of total BA, were assessed by high-performance liquid chromatography tandem mass spectrometry in colonic IBD patients (42) and healthy subjects (29). The faecal microbiota composition was assessed by quantitative real-time PCR. Using BA profiles and microbiota composition, cluster formation between groups was generated by ranking models. The faecal BA profiles in germ-free and conventional mice were compared. Direct enzymatic activities of BA biotransformation were measured in faeces. The impact of BA on the inflammatory response was investigated in vitro using Caco-2 cells stimulated by IL-1ß. RESULTS: IBD-associated dysbiosis was characterised by a decrease in the ratio between Faecalibacterium prausntizii and Escherichia coli. Faecal-conjugated BA rates were significantly higher in active IBD, whereas, secondary BA rates were significantly lower. Interestingly, active IBD patients exhibited higher levels of faecal 3-OH-sulphated BA. The deconjugation, transformation and desulphation activities of the microbiota were impaired in IBD patients. In vitro, secondary BA exerted anti-inflammatory effects, but sulphation of secondary BAs abolished their anti-inflammatory properties. CONCLUSIONS: Impaired microbiota enzymatic activity observed in IBD-associated dysbiosis leads to modifications in the luminal BA pool composition. Altered BA transformation in the gut lumen can erase the anti-inflammatory effects of some BA species on gut epithelial cells and could participate in the chronic inflammation loop of IBD.
Assuntos
Ácidos e Sais Biliares/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/microbiologia , Animais , Área Sob a Curva , Linhagem Celular Tumoral , Distribuição de Qui-Quadrado , Cromatografia Líquida de Alta Pressão , Neoplasias do Colo/patologia , Ensaio de Imunoadsorção Enzimática , Fezes/química , Fezes/microbiologia , Humanos , Metagenoma , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Espectrometria de Massas em TandemRESUMO
In vitro RBC production from stem cells could represent an alternative to classic transfusion products. Until now the clinical feasibility of this concept has not been demonstrated. We addressed the question of the capacity of cultured RBCs (cRBCs) to survive in humans. By using a culture protocol permitting erythroid differentiation from peripheral CD34(+) HSC, we generated a homogeneous population of cRBC functional in terms of their deformability, enzyme content, capacity of their hemoglobin to fix/release oxygen, and expression of blood group antigens. We then demonstrated in the nonobese diabetes/severe combined immunodeficiency mouse that cRBC encountered in vivo the conditions necessary for their complete maturation. These data provided the rationale for injecting into one human a homogeneous sample of 10(10) cRBCs generated under good manufacturing practice conditions and labeled with (51)Cr. The level of these cells in the circulation 26 days after injection was between 41% and 63%, which compares favorably with the reported half-life of 28 ± 2 days for native RBCs. Their survival in vivo testifies globally to their quality and functionality. These data establish the proof of principle for transfusion of in vitro-generated RBCs and path the way toward new developments in transfusion medicine. This study is registered at http://www.clinicaltrials.gov as NCT0929266.
Assuntos
Transfusão de Eritrócitos/métodos , Animais , Antígenos CD34/sangue , Antígenos de Grupos Sanguíneos/sangue , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Envelhecimento Eritrocítico , Deformação Eritrocítica , Eritrócitos/citologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritropoese , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Hemoglobinas/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante HeterólogoRESUMO
RATIONALE: Intestinal epithelial cells (IEC) secrete many chemokines in response to proinflammatory stimuli. We investigated their role in the mucosal inflammatory response in the intestine, by developing a non-targeted approach for analyzing the profile of peptides secreted by stimulated IEC, based on differential mass spectrometry analysis. METHODS: Lipopolysaccharide (LPS) was incubated with IEC as a proinflammatory stimulus. Differential peptidomic analysis was then carried out, comparing the profiles of IEC with and without LPS stimulation. A mass spectrometry procedure was developed, based on a liquid chromatography/tandem mass spectrometry (LC/MS/MS) approach without enzymatic pretreatment of the peptides. Partial de novo sequencing was carried out by Fourier transform ion cyclotron resonance (FTICR), and the native peptides in the culture media were identified. RESULTS: A major ion (m/z 7862.51) detected after stimulation was identified as GRO alpha and a minor ion (m/z 8918.17) was identified as IL-8. ELISA-based comparisons gave results consistent with those obtained by MS. Surprisingly, GRO alpha was secreted in amounts 5 to 15 times higher than those for IL-8 in our cellular model. The truncated form of IL-8, resulting from activation, was detected and distinguished from the native peptide by MS, whereas this was not possible with enzyme-linked immunosorbent assay (ELISA). CONCLUSIONS: Mass spectrometric analysis of culture media can be used to identify the principal peptides produced in response to the stimulation of IEC, and their metabolites. Mass spectrometry provides a comprehensive view of the chemokines and peptides potentially involved in gut inflammation, making it possible to identify the most appropriate peptides for further quantification.
Assuntos
Quimiocinas/análise , Cromatografia Líquida/métodos , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Espectrometria de Massas em Tandem/métodos , Quimiocina CXCL1/análise , Quimiocina CXCL1/química , Quimiocina CXCL1/metabolismo , Quimiocinas/química , Quimiocinas/metabolismo , Relação Dose-Resposta Imunológica , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células HT29 , Humanos , Interleucina-8/análise , Interleucina-8/química , Interleucina-8/metabolismo , Mucosa Intestinal/citologia , Lipopolissacarídeos/farmacologia , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Proteoma/efeitos dos fármacosRESUMO
The local immune-inflammatory response elicited by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still poorly described, as well as the extent to which its characteristics may be associated with the outcome of critical Coronavirus disease 2019 (COVID-19). In this prospective monocenter study, all consecutive COVID-19 critically ill patients admitted from February to December 2020 and explored by fiberoptic bronchoscopy with bronchoalveolar lavage (BAL) were included. Biological assays, including digital ELISA cytokine profiling and targeted eicosanoid metabolomic analysis, were performed on paired blood and BAL fluid (BALF). Clinical outcome was assessed through the World Health Organization 10-point Clinical Progression Scale (WHO-CPS) at the 28th day (D28) following the admission to intensive care unit. A D28-WHO-CPS value higher than 5 defined a poor outcome. Seventy-six patients were included, 45 (59%) had a poor day-28 outcome. As compared to their counterparts, patients with D28-WHO-CPS > 5 exhibited a neutrophil-predominant bronchoalveolar phenotype, with a higher BALF neutrophil/lymphocyte ratio, a blunted local type I interferon response, a decompartimentalized immune-inflammatory response illustrated by lower BALF/blood ratio of concentrations of IL-6 (1.68 [0.30-4.41] vs. 9.53 [2.56-19.1]; p = 0.001), IL-10, IL-5, IL-22 and IFN-γ, and a biological profile of vascular endothelial injury illustrated by a higher blood concentration of VEGF and higher blood and/or BALF concentrations of several vasoactive eicosanoids. In critically ill COVID-19 patients, we identified bronchoalveolar and blood immune-inflammatory biomarker signature associated with poor 28-day outcome.
Assuntos
COVID-19 , Biomarcadores , Líquido da Lavagem Broncoalveolar , Estado Terminal , Humanos , Estudos Prospectivos , SARS-CoV-2RESUMO
We have previously reported that silencing of galectin-4 expression in polarized HT-29 cells perturbed apical biosynthetic trafficking and resulted in a phenotype similar to the inhibitor of glycosylation, 1-benzyl-2-acetamido-2-deoxy-beta-d-galactopyranoside (GalNAcalpha-O-bn). We now present evidence of a lipid raft-based galectin-4-dependent mechanism of apical delivery of glycoproteins in these cells. First, galectin-4 recruits the apical glycoproteins in detergent-resistant membranes (DRMs) because these glycoproteins were depleted in DRMs isolated from galectin-4-knockdown (KD) HT-29 5M12 cells. DRM-associated glycoproteins were identified as ligands for galectin-4. Structural analysis showed that DRMs were markedly enriched in a series of complex N-glycans in comparison to detergent-soluble membranes. Second, in galectin-4-KD cells, the apical glycoproteins still exit the Golgi but accumulated inside the cells, showing that their recruitment within lipid rafts and their apical trafficking required the delivery of galectin-4 at a post-Golgi level. This lectin that is synthesized on free cytoplasmic ribosomes is externalized from HT-29 cells mostly in the apical medium and follows an apical endocytic-recycling pathway that is required for the apical biosynthetic pathway. Together, our data show that the pattern of N-glycosylation of glycoproteins serves as a recognition signal for endocytosed galectin-4, which drives the raft-dependent apical pathway of glycoproteins in enterocyte-like HT-29 cells.
Assuntos
Membrana Celular/metabolismo , Enterócitos/citologia , Galectina 4/metabolismo , Glicoproteínas/metabolismo , Biomarcadores/metabolismo , Configuração de Carboidratos , Sequência de Carboidratos , Polaridade Celular , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Enterócitos/metabolismo , Glicoproteínas/química , Complexo de Golgi/metabolismo , Células HT29 , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
Protein membrane transduction domains are able to translocate through cell membranes. This capacity resulted in new concepts on cell communication and in the design of vectors for internalization of active molecules into cells. Penetratin crosses the plasma membrane by a receptor and metabolic energy-independent mechanism which is at present unknown. A better knowledge of its interaction with phospholipids will help to understand the molecular mechanisms of cell penetration. Here, we investigated the role of lipid composition on penetratin induced membrane perturbations by X-ray diffraction, microscopy and (31)P-NMR. Penetratin showed the ability to induce phospholipid domain separation, membrane bilayer thickening, formation of vesicles, membrane undulations and tubular pearling. These data demonstrate its capacity to increase membrane curvature and suggest that dynamic phospholipid-penetratin complexes can be organized in different structural arrangements. These properties and their implications in peptide membrane translocation capacity are discussed.
Assuntos
Proteínas de Transporte/química , Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/químicaRESUMO
Rotaviruses are a major cause of acute gastroenteritis in children worldwide. Early stages of rotavirus assembly in infected cells occur in viroplasms. Confocal microscopy demonstrated that viroplasms associate with lipids and proteins (perilipin A, ADRP) characteristic of lipid droplets (LDs). LD-associated proteins were also found to colocalize with viroplasms containing a rotaviral NSP5-enhanced green fluorescent protein (EGFP) fusion protein and with viroplasm-like structures in uninfected cells coexpressing viral NSP2 and NSP5. Close spatial proximity of NSP5-EGFP and cellular perilipin A was confirmed by fluorescence resonance energy transfer. Viroplasms appear to recruit LD components during the time course of rotavirus infection. NSP5-specific siRNA blocked association of perilipin A with NSP5 in viroplasms. Viral double-stranded RNA (dsRNA), NSP5, and perilipin A cosedimented in low-density gradient fractions of rotavirus-infected cell extracts. Chemical compounds interfering with LD formation (isoproterenol plus isobutylmethylxanthine; triacsin C) decreased the number of viroplasms and inhibited dsRNA replication and the production of infectious progeny virus; this effect correlated with significant protection of cells from virus-associated cytopathicity. Rotaviruses represent a genus of another virus family utilizing LD components for replication, pointing at novel therapeutic targets for these pathogens.
Assuntos
Antivirais/farmacologia , Organelas/efeitos dos fármacos , Organelas/virologia , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Replicação Viral/efeitos dos fármacos , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Proteínas de Transporte , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Isoproterenol/farmacologia , Lipídeos/análise , Microscopia Confocal , Organelas/química , Perilipina-1 , Fosfoproteínas/análise , Triazenos/farmacologia , Proteínas não Estruturais Virais/análiseRESUMO
A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-kappaB activity, F. prausnitzii had no effect on IL-1beta-induced NF-kappaB activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-gamma production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-kappaB activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.
Assuntos
Anti-Inflamatórios/administração & dosagem , Doença de Crohn/terapia , Mucosa Intestinal/microbiologia , Probióticos/uso terapêutico , Ruminococcus/isolamento & purificação , Animais , Células Cultivadas , Colite , Doença de Crohn/microbiologia , Citocinas/biossíntese , Modelos Animais de Doenças , Humanos , Leucócitos/imunologia , Leucócitos/microbiologia , Camundongos , NF-kappa B/metabolismo , Probióticos/administração & dosagem , Probióticos/farmacologia , Resultado do TratamentoRESUMO
The delivery of bioactive molecules directly to damaged tissues represents a technological challenge. We propose here a new system based on virus-like particles (VLP) from rotavirus, with a marked tropism for the gut to deliver bio-active molecules to intestinal cells. For this, nonreplicative VLP nanoparticles were constructed using a baculovirus expression system and used to deliver an exogenous biomolecule, the green fluorescent protein (GFP), into either MA104 cells or intestinal cells from healthy and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-treated mice. Our results show that expression of rotavirus capsid proteins in baculovirus led to the auto assembly of VLP that display similar properties to rotavirus. In vitro experiments showed that VLP were able to enter into MA104 cells and deliver the reporter protein. Intragastric administration of fluorescent VLP in healthy and TNBS-treated mice resulted in the detection of GFP and viral proteins in intestinal samples. Our results demonstrate an efficient entry of non-replicative rotavirus VLP into the epithelial cell line MA104 and provide the first in vivo evidence of the potential of these nanoparticles as a promising safe candidate for drug delivery to intestinal cells.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/virologia , Rotavirus/fisiologia , Vírion/fisiologia , Internalização do Vírus , Análise de Variância , Animais , Baculoviridae/genética , Linhagem Celular , Colite/induzido quimicamente , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Spodoptera/metabolismo , Ácido Trinitrobenzenossulfônico , Vírion/genéticaRESUMO
A commonly-used method for analysing raft membrane domains is based on their resistance to extraction by non-ionic detergents at 4 degrees C. However, the selectivity of different detergents in defining raft membrane domains has been questioned. We have compared the lipid composition of detergent-resistant membranes (DRMs) obtained after Triton X-100 or Lubrol WX extraction in MDCK cells in order to understand the differential effect of these detergents on membranes and their selectivity in solubilizing or not proteins. Both Lubrol and Triton DRMs were enriched with cholesterol over the lysate, thus exhibiting characteristics consistent with the properties of membrane rafts. However, the two DRM fractions differed considerably in the ratio between lipids of the inner and outer membrane leaflets. Lubrol DRMs were especially enriched with phosphatidylethanolamine, including polyunsaturated species with long fatty acyl chains. Lubrol and Triton DRMs also differed in the amount of raft transmembrane proteins and raft proteins anchored to the cytoplasmic leaflet. Our results suggest that the inner side of rafts is enriched with phosphatidylethanolamine and cholesterol, and is more solubilized by Triton X-100 than by Lubrol WX.
Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Octoxinol/farmacologia , Polietilenoglicóis/farmacologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Cães , Ácidos Graxos/análise , Gangliosídeos/análise , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Solubilidade/efeitos dos fármacosRESUMO
Rotavirus infection modifies Ca(2+) homeostasis, provoking an increase in Ca(2+) permeation, the cytoplasmic Ca(2+) concentration ([Ca(2+)](cyto)), and total Ca(2+) pools and a decrease in Ca(2+) response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca(2+) and the amount of Ca(2+) sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca(2+) pools were evaluated as (45)Ca(2+) uptake. Infection with SA11 clone 28 induced an increase in Ca(2+) permeability and (45)Ca(2+) uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca(2+) homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased (45)Ca(2+) uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca(2+) homeostasis of infected cells through an initial increase of cell membrane permeability to Ca(2+).
Assuntos
Cálcio/metabolismo , Expressão Gênica , Glicoproteínas/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Permeabilidade da Membrana Celular , Chlorocebus aethiops , Retículo Endoplasmático/química , Glicoproteínas/genética , Humanos , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genéticaRESUMO
Abnormalities in membrane lipids have been repeatedly reported in patients with schizophrenia. These abnormalities include decreased phosphatidylethanolamine (PE) and n-3 and n-6 polyunsaturated fatty acids in peripheral and brain cell membranes. The present study investigates the hypothesis of an overrepresentation of PE in the external leaflet of the red blood cell (RBC) membrane in patients with schizophrenia. The assumption was that this modification of PE asymmetrical distribution could explain the reported lipid membrane abnormalities. Phosphatidylethanolamine located in the external leaflet was specifically labeled in RBC membranes from 65 medicated patients with schizophrenia and 38 healthy controls. Labeled (external) and non-labeled (internal) PE and their respective fatty acid composition were analyzed by mass spectrometry. A significant increase in the percentage of external leaflet PE was found in RBC membranes in 63.1% of the patients. In this subgroup, a significant depletion of n-3 and n-6 polyunsaturated fatty acids from internally located PE was also observed. Age, sex and antipsychotic treatment were not associated with the transbilayer membrane distribution of PE. Potential mechanisms underlying these abnormalities may involve membrane phospholipid transporters or degradative enzymes involved in phospholipid metabolism. The anomaly described could characterize a subgroup among patients with schizophrenia.
Assuntos
Membrana Celular/ultraestrutura , Eritrócitos/patologia , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Esquizofrenia/sangue , Adulto , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/ultraestrutura , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidiletanolaminas/metabolismo , Esquizofrenia/tratamento farmacológicoRESUMO
Intestinal epithelial cells (IEC) have adapted to the presence of commensal bacteria through a state of tolerance that involves a limited response to lipopolysaccharide (LPS). Low or absent expression of two LPS receptor molecules, the myeloid differentiation (MD)-2 receptor, and toll-like receptor (TLR)4 was suggested to underlie LPS tolerance in IEC. In the present study we performed transfections of TLR4 and MD-2 alone or combined in different IEC lines derived from intestinal cancer (Caco-2, HT-29, and SW837). We found that LPS responsiveness increased more than 100-fold when IEC were transfected with MD-2 alone, but not TLR4. The release of interleukin (IL)-8, but also the expression of cyclooxygenase (Cox-)2 and the related secretion of prostaglandin (PG)E2 were coordinately stimulated by LPS in IEC transfected with MD-2 alone. Supernatants collected from MD-2-transfected IEC supported LPS activation of naïve HT-29, providing additional support to the concept that MD-2 alone endows IEC with LPS responsiveness. LPS responsiveness detected at concentrations as low as 110 pg/ml, and maximal values obtained by 10 ng/ml were clearly beyond those evoked by classical stimuli as IL-1beta. In polarized cells, apical LPS stimulation was markedly more efficient than basolateral. Our data contradict previous opinion that both TLR4 and MD-2 limit IEC response to LPS, and emphasize the prominent role of MD-2 in intestinal immune responses to Gram-negative bacteria.
Assuntos
Células Epiteliais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/fisiologia , Antracenos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Células Cultivadas , Ciclo-Oxigenase 2/biossíntese , Dinoprostona/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Citometria de Fluxo , Expressão Gênica , Células HT29 , Humanos , Imidazóis/farmacologia , Interleucina-8/metabolismo , Intestinos/patologia , Antígeno 96 de Linfócito/genética , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , NF-kappa B/metabolismo , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , TransfecçãoRESUMO
In polarized hepatic cells, pathways and molecular principles mediating the flow of resident apical bile canalicular proteins have not yet been resolved. Herein, we have investigated apical trafficking of a glycosylphosphatidylinositol-linked and two single transmembrane domain proteins on the one hand, and two polytopic proteins on the other in polarized HepG2 cells. We demonstrate that the former arrive at the bile canalicular membrane via the indirect transcytotic pathway, whereas the polytopic proteins reach the apical membrane directly, after Golgi exit. Most importantly, cholesterol-based lipid microdomains ("rafts") are operating in either pathway, and protein sorting into such domains occurs in the biosynthetic pathway, largely in the Golgi. Interestingly, rafts involved in the direct pathway are Lubrol WX insoluble but Triton X-100 soluble, whereas rafts in the indirect pathway are both Lubrol WX and Triton X-100 insoluble. Moreover, whereas cholesterol depletion alters raft-detergent insolubility in the indirect pathway without affecting apical sorting, protein missorting occurs in the direct pathway without affecting raft insolubility. The data implicate cholesterol as a traffic direction-determining parameter in the direct apical pathway. Furthermore, raft-cargo likely distinguishing single vs. multispanning membrane anchors, rather than rafts per se (co)determine the sorting pathway.
Assuntos
Metabolismo dos Lipídeos , Fígado/citologia , Microdomínios da Membrana , Animais , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Citocalasina D/metabolismo , DNA Complementar/metabolismo , Detergentes/farmacologia , Cães , Técnica Indireta de Fluorescência para Anticorpo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Octoxinol/farmacologia , Testes de Precipitina , Estrutura Terciária de Proteína , Transporte Proteico , Fatores de Tempo , TransfecçãoRESUMO
Cytoplasmic phospholipase A2 (cPLA2) has a key role in prostaglandin production. The role of cPLA2 in intestinal tumorigenesis has been suggested, however, contradictory data are found in the literature. We evaluated cPLA2 and cyclooxygenase-2 (COX-2) protein expression in 65 colon carcinomas by immunohistochemistry, and in eight colorectal cancer cell lines by Western Blot. PGE2 production was evaluated by enzyme-immunoassay in the cell lines. We demonstrate that cPLA2 is overexpressed in approximately 50% of colon cancers and cell lines. cPLA2 expression is correlated with COX-2 expression. Both cPLA2 and COX-2 expressions are important in regard to PGE2 production. Our data suggest that cPLA2 might be involved in colon tumor development.
Assuntos
Adenocarcinoma/patologia , Neoplasias Colorretais/patologia , Ciclo-Oxigenase 2/genética , Dinoprostona/biossíntese , Fosfolipases A/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Western Blotting , Células CACO-2 , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citoplasma/enzimologia , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Imuno-Histoquímica , Instabilidade de Microssatélites , Estadiamento de Neoplasias , Fosfolipases A/metabolismo , Fosfolipases A2 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Confocal laser scanning microscopy (CLSM) is the most popular technique for mapping the subcellular distribution of a fluorescent molecule and is widely used to investigate the penetration properties of exogenous macromolecules, such as cell-penetrating peptides (CPPs), within cells. Despite the membrane-association propensity of all these CPPs, the signal of the fluorescently labeled CPPs did not colocalize with the plasma membrane. We studied the origin of this fluorescence extinction and the overall consequence on the interpretation of intracellular localizations from CLSM pictures. We demonstrated that this discrepancy originated from fluorescence self-quenching. The fluorescence was unveiled by a "dilution" protocol, i.e. by varying the ratio fluorescent/non-fluorescent CPP. This strategy allowed us to rank with confidence the subcellular distribution of several CPPs, contributing to the elucidation of the penetration mechanism. More generally, this study proposes a broadly applicable and reliable method to study the subcellular distribution of any fluorescently labeled molecules.
Assuntos
Peptídeos Penetradores de Células/metabolismo , Corantes Fluorescentes/química , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/química , Corantes Fluorescentes/metabolismo , Células HeLa , Humanos , Ionóforos , Microscopia ConfocalRESUMO
The effect of detergents on giant unilamellar vesicles (GUVs) composed of phosphatidylcholine, sphingomyelin and cholesterol and containing liquid-ordered phase (l(o)) domains was investigated. Such domains have been used as models for the lipid rafts present in biological membranes. The studied detergents included lyso-phosphatidylcholine, the product of phospholipase A2 activity, as well as Triton X-100 and Brij 98, i.e. detergents used to isolate lipid rafts as DRMs. Local external injection of each of the three detergents at subsolubilizing amounts promoted exclusion of l(o) domains from the GUV as small vesicles. The budding and fission processes associated with this vesiculation were interpreted as due to two distinct effects of the detergent. In this framework, the budding is caused by the initial incorporation of the detergent in the outer membrane leaflet which increases the spontaneous curvature of the bilayer. The fission is related to the inverted-cone molecular shape of the detergent which stabilizes positively curved structures, e.g. pores involved in vesicle separation. On the other hand, we observed in GUVs neither domain formation nor domain coalescence to be induced by the addition of detergents. This supports the idea that isolation of DRM from biological membranes by detergent-induced extraction is not an artifact. It is also suggested that the physico-chemical mechanisms involved in l(o) domain budding and fission might play a role in rafts-dependant endocytosis in cells.