RESUMO
BACKGROUND: Lung cancer is the most life-threatening cancer type worldwide. Treatment options include surgery, radio- and chemotherapy, as well as the use of immunomodulatory antibodies. Interleukin (IL)-10 is an immunosuppressive cytokine involved in tumour immune escape. METHODS: Immunohistochemistry (IHC) on human lung surgery tissue as well as human tumour cell line cultures, FACS analysis, real-time PCR and experimental lung cancer. RESULTS: Here we discovered a positive correlation between IL-10 and IL-10 receptor (IL-10R) expression in the lung with tumour diameter in patients with lung cancer (non-small cell lung cancer), the most life-threatening cancer type worldwide. IL-10 and IL-10R were found induced in cells surrounding the lung tumour cells, and IL-10R was mainly expressed on the surface of Foxp-3+ T-regulatory lymphocytes infiltrating the tumour of these patients where its expression inversely correlated with programmed cell death 1. These findings were confirmed in translational studies. In a human lung adenocarcinoma cell line, IL-10R was found induced under metabolic restrictions present during tumour growth, whereby IL-10 inhibited PDL1 and tumour cell apoptosis. CONCLUSIONS: These new findings suggest that IL-10 counteracts IFN-γ effects on PD1/PDL1 pathway, resulting in possible resistance of the tumour to anti-PD1/PDL1 immunotherapy.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Interleucina-10/fisiologia , Neoplasias Pulmonares/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma de Pulmão , Animais , Antígeno B7-H1/análise , Antígeno B7-H1/fisiologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor de Morte Celular Programada 1/análise , Receptor de Morte Celular Programada 1/fisiologia , Receptores de Interleucina-10/análise , Evasão TumoralRESUMO
Background: Allergic Asthma is a disease presenting various endotypes and no current therapies act curative but alleviate disease symptoms. Dietary interventions are gaining increasing importance in regulating immune responses. Furthermore, short chain fatty acids (SFCA), as the main products of dietary fiber's fermentation by the gut bacteria, ameliorate the pathogenesis and disease burden of different illnesses including asthma. Nevertheless, the connection and crosstalk between the gut and lung is poorly understood. Objective: In this work, the role of high fiber diet on the development of allergic asthma at baseline and after exacerbation of disease induced by respiratory viruses was investigated. Methods: Hereby, SCFA in serum of asthmatic and non-asthmatic pre-school children before and after airway disease symptoms were analyzed. Moreover, the effect of high fiber diet in vivo in a murine model of house dust mite extract (HDM) induced allergic asthma and in the end in isolated lung and spleen cells infected ex vivo with Rhinovirus was analyzed. Results: In this study, a decrease of the SCFA 3-Hydroxybutyric acid in serum of asthmatic children after symptomatic episodes at convalescent visit as compared to asthmatic and control children at baseline visit was observed. In experimental asthma, in mice fed with high fiber diet, a reduced lung GATA3 + Th2 type mediated inflammation, mucus production and collagen deposition and expression of Fc epsilon receptor Ia (FcεRIa) in eosinophils was observed. By contrast, the CD8+ memory effector T cells were induced in the lungs of asthmatic mice fed with high fiber diet. Then, total lung cells from these asthmatic mice fed with either standard food or with fiber rich food were infected with RV ex vivo. Here, RV1b mRNA was found significantly reduced in the lung cells derived from fiber rich food fed mice as compared to those derived from standard food fed asthmatic mice. Looking for the mechanism, an increase in CD8+ T cells in RV infected spleen cells derived from fiber rich fed asthmatic mice, was observed. Conclusion: Convalescent preschool asthmatic children after a symptomatic episode have less serum ß-Hydroxybutyric acid as compared to control and asthmatic children at baseline visit. Fiber rich diet associated with anti-inflammatory effects as well as anti-allergic effects by decreasing Type 2 and IgE mediated immune responses and inducing CD8+ memory effector T cells in a murine model of allergic asthma. Finally, ex vivo infection with Rhinovirus (RV) of total lung cells from asthmatic mice fed with fiber rich food led to a decreased RV load as compared to mice fed with standard food. Moreover, spleen cells derived from asthmatic mice fed with fiber rich food induced CD8+ T cells after ex vivo infection with RV. Clinical implications: Dietary interventions with increased content in natural fibers like pectins would ameliorate asthma exacerbations. Moreover, respiratory infection in asthma downregulated SCFA in the gut contributing to asthma exacerbations.
Assuntos
Asma/etiologia , Asma/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Asma/diagnóstico , Asma/terapia , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Infecções por Picornaviridae/virologia , Carga ViralRESUMO
Neoplasms of the lungs are the leading cause of cancer incidence and mortality worldwide. Although immunotherapy has increased the overall survival of patients with lung cancer, there is the need to improve this treatment. At this regard, blood lipid levels are thought to be linked to cancer risk and thus a preventive intervention through regulation of the nutrition of patients with lung cancer is gaining much attention. In this study, we therefore asked about the contribution of serum lipids and cholesterol cellular metabolism in lung cancer development and progression. We measured different serum lipids and analyzed cholesterol synthesis enzymes 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) and acetyl-coenzyme A cholesterol acetyltransferase 1 (ACAT1) as well as the cholesterol cellular export protein ATP-binding cassette (ABC) A-1 mRNA by quantitative PCR (qPCR) in the control and tumoral regions of post-surgery lung tissues to analyze the accumulation of cholesterol in cancer cells in a cohort of patients with lung adenocarcinoma (LUAD). We found that triglycerides in serum directly correlated with the body mass index (BMI) in patients with LUAD. By contrast, we found that high-density lipoprotein (HDL) cholesterol inversely correlated with the BMI, C-reactive protein (CRP) and overall survival and total cholesterol inversely correlated with the tumor diameter, serum CRP and overall survival in these LUAD patients. Functionally, the role of cholesterol is indispensable for the growth and development of normal animal cells where it is tightly regulated. Excess of cellular cholesterol regulated by HMGCR is converted to cholesteryl esters by the enzyme ACAT1 and exported extracellularly by the cholesterol transporter ABCA1. Here we found HMGCR and ACAT1 upregulated and ABCA1 downregulated in the lung's tumoral region of our LUAD cohort, indicating cholesterol dysregulated cellular export in lung tumor cells.
Assuntos
Colesterol , Neoplasias Pulmonares , Animais , Colesterol/metabolismo , Triglicerídeos , HDL-Colesterol , Ésteres do Colesterol , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismoRESUMO
Asthma is a chronic airway disease whose exacerbations are often triggered by rhinovirus infection. TGF-ß1 induces rhinovirus replication in infected cells. Moreover, TGF-ß1 is a pleiotropic mediator that is produced by many immune cells in the latent, inactive form bound to the latency-associated peptide (LAP) and to the transmembrane protein glycoprotein A repetitions predominant (GARP). In this study we wanted to investigate the effect of rhinovirus infection on the TGF-ß secretion and the downstream signaling via TGF-ßRI/RII in peripheral blood mononuclear cells from control and asthmatic patients after rhinovirus infection ex vivo. Here, we found a significant upregulation of TGF-ßRII in untouched PBMCs of asthmatics as well as a suppression of TGF-ß release in the rhinovirus-infected PBMC condition. Moreover, consistent with an effect of TGF-ß on Tregs, PBMCs infected with RV induced Tregs, and TGF-ßRII directly correlated with RV1b mRNA. Finally, we found via flow cytometry that NK cells expressed less GARP surface-bound TGF-ß, while cytokine-producing NKbright cells were induced. In summary, we show that rhinovirus infection inhibits TGF-ß release in PBMCs, which results in the activation of both Treg and NK cells.
Assuntos
Asma , Infecções por Enterovirus , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Rhinovirus , Leucócitos Mononucleares/metabolismo , Proteínas de Membrana/metabolismo , Células Matadoras Naturais/metabolismo , GlicoproteínasRESUMO
The lipid hydrolase enzyme acid sphingomyelinase (ASM) is required for the conversion of the lipid cell membrane component sphingomyelin into ceramide. In cancer cells, ASM-mediated ceramide production is important for apoptosis, cell proliferation, and immune modulation, highlighting ASM as a potential multimodal therapeutic target. In this study, we demonstrate elevated ASM activity in the lung tumor environment and blood serum of patients with non-small cell lung cancer (NSCLC). RNAi-mediated attenuation of SMPD1 in human NSCLC cells rendered them resistant to serum starvation-induced apoptosis. In a murine model of lung adenocarcinoma, ASM deficiency reduced tumor development in a manner associated with significant enhancement of Th1-mediated and cytotoxic T-cell-mediated antitumor immunity. Our findings indicate that targeting ASM in NSCLC can act by tumor cell-intrinsic and -extrinsic mechanisms to suppress tumor cell growth, most notably by enabling an effective antitumor immune response by the host. Cancer Res; 77(21); 5963-76. ©2017 AACR.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Evasão da Resposta Imune , Neoplasias Pulmonares/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Células A549 , Animais , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Ceramidas/sangue , Ceramidas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Interferência de RNA , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Espectrometria de Massas em Tandem , Carga TumoralRESUMO
Genome-wide association studies (GWAS) associated Family with sequence similarity 13, member A (FAM13A) with non-small cell lung cancer (NSCLC) occurrence. Here, we found increased numbers of FAM13A protein expressing cells in the tumoral region of lung tissues from a cohort of patients with NSCLC. Moreover, FAM13A inversely correlated with CTLA4 but directly correlated with HIF1α levels in the control region of these patients. Consistently, FAM13A RhoGAP was found to be associated with T cell effector molecules like HIF1α and Tbet and was downregulated in immunosuppressive CD4+CD25+Foxp3+CTLA4+ T cells. TGFß, a tumor suppressor factor, as well as siRNA to FAM13A, suppressed both isoforms of FAM13A and inhibited tumor cell proliferation. RNA-Seq analysis confirmed this finding. Moreover, siRNA to FAM13A induced TGFß levels. Finally, in experimental tumor cell migration, FAM13A was induced and TGFß accelerated this process by inducing cell migration, HIF1α, and the FAM13A RhoGAP isoform. Furthermore, siRNA to FAM13A inhibited tumor cell proliferation and induced cell migration without affecting HIF1α. In conclusion, FAM13A is involved in tumor cell proliferation and downstream of TGFß and HIF1α, FAM13A RhoGAP is associated with Th1 gene expression and lung tumor cell migration. These findings identify FAM13A as key regulator of NSCLC growth and progression.