Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D791-D797, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37953409

RESUMO

UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.


Assuntos
Bases de Dados de Ácidos Nucleicos , Fungos , DNA Espaçador Ribossômico , Fungos/genética , Biodiversidade , DNA Fúngico , Filogenia
2.
Microb Ecol ; 87(1): 72, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755460

RESUMO

Air pollution caused by tropospheric ozone contributes to the decline of forest ecosystems; for instance, sacred fir, Abies religiosa (Kunth) Schltdl. & Cham. forests in the peri-urban region of Mexico City. Individual trees within these forests exhibit variation in their response to ozone exposure, including the severity of visible symptoms in needles. Using RNA-Seq metatranscriptomic data and ITS2 metabarcoding, we investigated whether symptom variation correlates with the taxonomic and functional composition of fungal mycobiomes from needles collected in this highly polluted area in the surroundings of Mexico City. Our findings indicate that ozone-related symptoms do not significantly correlate with changes in the taxonomic composition of fungal mycobiomes. However, genes coding for 30 putative proteins were differentially expressed in the mycobiome of asymptomatic needles, including eight genes previously associated with resistance to oxidative stress. These results suggest that fungal communities likely play a role in mitigating the oxidative burst caused by tropospheric ozone in sacred fir. Our study illustrates the feasibility of using RNA-Seq data, accessible from global sequence repositories, for the characterization of fungal communities associated with plant tissues, including their gene expression.


Assuntos
Poluição do Ar , Fungos , Micobioma , Folhas de Planta , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Folhas de Planta/microbiologia , México , Poluição do Ar/efeitos adversos , Ozônio , Estresse Fisiológico , Cidades
3.
Microb Ecol ; 84(3): 821-833, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34671827

RESUMO

The worldwide production of vanilla, a native orchid from Mexico, is greatly affected by stem and root rot disease (SRD), typically associated with Fusarium oxysporum fungi. We hypothesized that the presence of Fusarium species in vanilla is not sufficient for the plant to express symptoms of the disease. We described the taxonomic composition of endophytic microbiomes in symptomatic and asymptomatic vanilla plants using 16S and ITS rDNA metabarcoding, and ITS Sanger sequences generated from fungal isolates. We compared the bacterial and fungal diversity in vanilla plants from a long-term plantation, and from feral plants found near abandoned plantations that did not present SRD symptoms. No significant differences were found in the species richness of the bacterial and fungal microbiome among feral, or asymptomatic and symptomatic cultivated vanilla. However, significant differences were detected in both fungal and bacterial diversity from different organs in the same plant, with roots being more diverse than stems. We found that Proteobacteria and Actinobacteria, as well as the fungal families Nectriaceae and Xylariaceae, constitute the core of the vanilla microbiome that inhabits the root and stem of both cultivated and feral plants. Our work provides information on the microbial diversity associated to root and stem rot in vanilla and lays the groundwork for a better understanding of the role of the microbiome in vanilla fungal diseases.


Assuntos
Microbiota , Vanilla , Humanos , Vanilla/microbiologia , DNA Ribossômico , Bactérias/genética , México
4.
New Phytol ; 222(4): 1936-1950, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30689219

RESUMO

The biological and functional diversity of ectomycorrhizal (ECM) associations remain largely unknown in South America. In Patagonia, the ECM tree Nothofagus pumilio forms monospecific forests along mountain slopes without confounding effects of vegetation on plant-fungi interactions. To determine how fungal diversity and function are linked to elevation, we characterized fungal communities, edaphic variables, and eight extracellular enzyme activities along six elevation transects in Tierra del Fuego (Argentina and Chile). We also tested whether pairing ITS1 rDNA Illumina sequences generated taxonomic biases related to sequence length. Fungal community shifts across elevations were mediated primarily by soil pH with the most species-rich fungal families occurring mostly within a narrow pH range. By contrast, enzyme activities were minimally influenced by elevation but correlated with soil factors, especially total soil carbon. The activity of leucine aminopeptidase was positively correlated with ECM fungal richness and abundance, and acid phosphatase was correlated with nonECM fungal abundance. Several fungal lineages were undetected when using exclusively paired or unpaired forward ITS1 sequences, and these taxonomic biases need reconsideration for future studies. Our results suggest that soil fungi in N. pumilio forests are functionally similar across elevations and that these diverse communities help to maintain nutrient mobilization across the elevation gradient.


Assuntos
Micorrizas/fisiologia , Solo/química , Sequência de Bases , Biodiversidade , Chile , DNA Ribossômico/genética , Meio Ambiente , Geografia
5.
Am J Bot ; 105(7): 1198-1211, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001470

RESUMO

PREMISE OF THE STUDY: Factors shaping spatiotemporal patterns of associations in mutualistic systems are poorly understood. We used the lichen-forming fungi Peltigera and their cyanobacterial partners Nostoc to investigate the spatial structure of this symbiosis at an intrabiome scale and to identify potential factors shaping these associations. METHODS: Ninety-three thalli were sampled in Québec, Canada, along a south-north and an east-west transect of ~1300 km each. We identified the two main partners (Peltigera species and Nostoc phylogroups) using molecular markers and modeled the effects of environmental variables and partner occurrence on Peltigera-Nostoc distributions. KEY RESULTS: Peltigera species showed a high degree of specialization toward cyanobionts, whereas two Nostoc phylogroups dominated both transects by associating with several Peltigera species. Peltigera species had narrower ranges than these two main cyanobionts. Distributions of three Peltigera species were highly associated with precipitation and temperature variables, which was not detected for Nostoc phylogroups at this spatial scale. CONCLUSIONS: For these cyanolichens, factors driving patterns of symbiotic associations are scale dependent. Contrary to global-scale findings, generalist Peltigera species were not more widespread within the boreal biome than specialists. Nostoc availability was not the only driver of Peltigera species' geographic ranges; environmental factors also contributed to their intrabiome distributions. Climatic conditions (especially precipitation) limited the range of some Peltigera species more than the range of their cyanobacterial partners at an intrabiome (boreal) scale.


Assuntos
Ascomicetos/fisiologia , Líquens/microbiologia , Simbiose , Quebeque
6.
Mol Phylogenet Evol ; 117: 10-29, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860010

RESUMO

Synteny can be maintained for certain genomic regions across broad phylogenetic groups. In these homologous genomic regions, sites that are under relaxed purifying selection, such as intergenic regions, could be used broadly as markers for population genetic and phylogenetic studies on species complexes. To explore the potential of this approach, we found 125 Collinear Orthologous Regions (COR) ranging from 1 to >10kb across nine genomes representing the Lecanoromycetes and Eurotiomycetes (Pezizomycotina, Ascomycota). Twenty-six of these COR were found in all 24 eurotiomycete genomes surveyed for this study. Given the high abundance and availability of fungal genomes we believe this approach could be adopted for other large groups of fungi outside the Pezizomycotina. Asa proof of concept, we selected three Collinear Orthologous Regions (COR1b, COR3, and COR16), based on synteny analyses of several genomes representing three classes of Ascomycota: Eurotiomycetes, Lecanoromycetes, and Lichinomycetes. COR16, for example, was found across these three classes of fungi. Here we compare the resolving power of these three new markers with five loci commonly used in phylogenetic studies of fungi, using section Polydactylon of the cyanolichen-forming genus Peltigera (Lecanoromycetes) - a clade with several challenging species complexes. Sequence data were subjected to three species discovery and two validating methods. COR markers substantially increased phylogenetic resolution and confidence, and highly contributed to species delimitation. The level of phylogenetic signal provided by each of the COR markers was higher than the commonly used fungal barcode ITS. High cryptic diversity was revealed by all methods. As redefined here, most species represent lineages that have relatively narrower, and more homogeneous biogeographical ranges than previously understood. The scabrosoid clade consists of ten species, seven of which are new. For the dolichorhizoid clade, twenty-two new species were discovered for a total of twenty-nine species in this clade.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Marcadores Genéticos/genética , Genoma Fúngico/genética , Genômica , Líquens/classificação , Líquens/genética , Filogenia , DNA Intergênico , Reprodutibilidade dos Testes , Especificidade da Espécie , Sintenia
8.
Am J Bot ; 101(7): 1141-1156, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25016011

RESUMO

• Premise of this study: Aquatic cyanolichens from the genus Peltigera section Hydrothyriae are subject to anthropogenic threats and, therefore, are considered endangered. In this study we addressed the phylogenetic placement of section Hydrothyriae within Peltigera. We delimited species within the section and identified their symbiotic cyanobacteria.• Methods: Species delimitation and population structure were explored using monophyly as a grouping criterion (RAxML) and Structurama based on three protein-coding genes in combination with two nuclear ribosomal loci. The 16S and rbcLX sequences for the cyanobionts were analyzed in the broad phylogenetic context of free-living and symbiotic cyanobacteria.• Key results: We confirm with high confidence the placement of section Hydrothyriae within the monophyletic genus Peltigera; however, its phylogenetic position within the genus remains unsettled. We recovered three distinct monophyletic groups corresponding to three species: P. hydrothyria, P. gowardii s.s., and P. aquatica Miadl. & Lendemer, the latter being formally introduced here. Each species was associated with an exclusive set of Nostoc haplotypes.• Conclusions: The ITS region alone provides sufficient genetic information to distinguish the three morphologically cryptic species within section Hydrothyriae. Section Hydrothyriae seems to be associated with a monophyletic lineage of Nostoc, that has not been found in symbiotic association with other members of Peltigera. Capsosira lowei should be transferred to the genus Nostoc. Potential threats to P. aquatica should be re-examined based on the recognition of two aquatic species in western North America.

9.
Ecol Evol ; 14(10): e70299, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39355103

RESUMO

Subantarctic Nothofagus forests are the southernmost forests in the world, with negligible atmospheric nitrogen (N) deposition. Most paradigms about the role of ectomycorrhizal (ECM) fungi in N cycling and plant N uptake at high latitudes have been tested in boreal coniferous forests, while in the southern hemisphere, ECM hosts are primarily angiosperms. Using ITS1 meta-barcoding, we characterized ECM and saprotrophic fungal communities in evergreen and deciduous Nothofagus forests forming monodominant and mixed stands in the archipelago of Tierra del Fuego (Chile and Argentina). We assessed the N economy of Nothofagus by correlating host species with fungal relative abundances, edaphic variables, net N mineralization, microbial biomass N and the activity of eight extracellular soil enzymes activities. The N economy of deciduous N. pumilio forests was strikingly similar to boreal coniferous forests, with the lowest inorganic N availability and net N mineralization, in correlation to higher relative abundances of ECM fungi with enzymatic capacity for organic N mobilization (genus Cortinarius). In contrast, the N economy of evergreen N. betuloides forests was predominantly inorganic and correlated with ECM lineages from the family Clavulinaceae, in acidic soils with poor drainage. Grassy understory vegetation in deciduous N. antarctica forests likely promoted saprotrophic fungi (i.e., genus Mortierella) in correlation with higher activities of carbon-degrading enzymes. Differences between Nothofagus hosts did not persist in mixed forests, illustrating the range of soil fertility of these ECM angiosperms and the underlying effects of soil and climate on Nothofagus distribution and N cycling in southern Patagonia.


Los bosques subantárticos de Nothofagus son los más australes del mundo, en donde la deposición atmosférica de nitrógeno (N) es casi nula. La mayoría de los estudios sobre el papel de hongos ectomicorrícicos (ECM) está basado en bosques de coníferas perennes, en el hemisferio norte; mientras que en el hemisferio sur los hospederos ECM son principalmente angiospermas. Caracterizamos las comunidades de hongos ECM y saprobios del suelo por secuenciación de ADN ambiental de la región ITS1 de 150 muestras recolectadas en bosques perennes, caducifolios y mixtos dominados por Nothofagus en el archipiélago de Tierra del Fuego (Argentina y Chile). Estudiamos la economía del N en diferentes bosques de Nothofagus, evaluando las correlaciones entre las comunidades de hongos ECM y saprobios con sus hospederos, variables edáficas, mineralización neta del N, biomasa microbiana del N y la actividad de ocho enzimas extracelulares. Encontramos que la economía del N de los bosques caducifolios de N. pumilio es sorprendentemente similar a la de los bosques de coníferas boreales, en los que encontramos los valores más bajos de N orgánico disponible y de mineralización neta del N, en correlación con mayor abundancia relativa de hongos ECM con capacidad enzimáticas de descomposición (género Cortinarius). En contraste, la economía del N de los bosques perennes de N. betuloides es predominantemente inorgánica y se correlaciona con abundancia alta de hongos ECM de la familia Clavulinaceae, preferentemente en suelos ácidos y anegadizos. La vegetación herbácea del sotobosque en los bosques caducifolios de N. antarctica posiblemente ha aumentado la abundancia de hongos saprobios (p. ej., Mortierella) que se correlaciona con una mayor actividad de enzimas de degradación del carbono. Las diferencias encontradas entre bosques perennes y caducifolios no persistieron en los bosques mixtos, lo que ilustra el gradiente de fertilidad del suelo de estas angiospermas formadoras de ectomicorrizas, y los efectos subyacentes del suelo y el clima en la distribución de Nothofagus y el ciclo del N en la región.

10.
Mol Phylogenet Evol ; 68(2): 357-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23603312

RESUMO

In lichen-forming fungi, traditional taxonomical concepts are frequently in conflict with molecular data, and identifying appropriate taxonomic characters to describe phylogenetic clades remains challenging in many groups. The selection of suitable markers for the reconstruction of solid phylogenetic hypotheses is therefore fundamental. The lichen genus Usnea is highly diverse, with more than 350 estimated species, distributed in polar, temperate and tropical regions. The phylogeny and classification of Usnea have been a matter of debate, given the lack of phenotypic characters to describe phylogenetic clades and the low degree of resolution of phylogenetic trees. In this study, we investigated the phylogenetic relationships of 52 Usnea species from across the genus, based on ITS rDNA, nuLSU, and two protein-coding genes RPB1 and MCM7. ITS comprised several highly variable regions, containing substantial genetic signal, but also susceptible to causing bias in the generation of the alignment. We compared several methods of alignment of ITS and found that a simultaneous optimization of alignment and phylogeny (using BAli-phy) improved significantly both the topology and the resolution of the phylogenetic tree. However the resolution was even better when using protein-coding genes, especially RPB1 although it is less variable. The phylogeny based on the concatenated dataset revealed that the genus Usnea is subdivided into four highly-supported clades, corresponding to the traditionally circumscribed subgenera Eumitria, Dolichousnea, Neuropogon and Usnea. However, characters that have been used to describe these clades are often homoplasious within the phylogeny and their parallel evolution is suggested. On the other hand, most of the species were reconstructed as monophyletic, indicating that combinations of phenotypic characters are suitable discriminators for delimitating species, but are inadequate to describe generic subdivisions.


Assuntos
Ascomicetos/genética , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Líquens/genética , Ascomicetos/classificação , DNA Fúngico/genética , Genes Fúngicos , Líquens/classificação , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia
12.
Mycologia ; 113(5): 1022-1055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236939

RESUMO

In the Patagonian region, Cortinarius is the most diverse and abundant genus of ectomycorrhizal fungi with at least 250 species. Sequestrate forms were until recently documented within the genus Thaxterogaster, a genus now known to be polyphyletic, and many were consequently transferred to Cortinarius. Original descriptions were mostly available in German and Spanish and interpretations of morphological structures outdated. Despite recent advances in Cortinarius systematics, the current classification, diversity, and ecology of sequestrate "cortinarioid" fungi in Patagonia remain unclear. The objective of this study was to provide an update on sequestrate Cortinarius of southern South America. We documented each species with morphological descriptions, photographs, basidiospore scanning electron microscopy (SEM) images, and molecular characterization using nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) and nuc 28S rDNA (28S) sequence data. Original descriptions of taxa were also translated to English and revised based on fresh collections. We documented 24 species from Patagonia based on molecular data and conducted morphological and phylogenetic analysis for 18 previously described species based on type and reference specimens. In addition, we formally described two new species. Four additional taxa were provisionally determined as new but require further study. New ITS sequence data were produced from eight type specimens. We also provide a new name, Cortinarius gloiodes, nom. nov., for the taxon previously described as Thaxterogaster gliocyclus. In addition to the species treated in detail, we provided additional reference information and discussion on six described species that remained incompletely known or for which no recent collections were found. Of the 24 taxa documented from Patagonia, 15 species were assigned to 12 current sections in the genus Cortinarius. Analysis of spore ultrastructure showed that sequestrate forms of Patagonian Cortinarius lack a true perisporium.


Assuntos
Agaricales , Cortinarius , Agaricales/genética , Cortinarius/genética , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Filogenia , Análise de Sequência de DNA
13.
Mycologia ; 110(6): 1127-1144, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30489223

RESUMO

In this study, we document and describe the new Cortinarius section Austroamericani. Our results reveal high species diversity within this clade, with a total of 12 recognized species. Of these, only C. rufus was previously documented. Seven species are described as new based on basidiomata collections. The four remaining species are only known from environmental sequences. All examined species form ectomycorrhizal associations with species of Nothofagaceae and are currently only known from Argentinean and Chilean Patagonia. The phylogenetic analysis based on the nuc rDNA internal transcriber spacer (ITS1-5.8S-ITS2 = ITS) and partial 28S gene (28S) sequences shows that this section is related to other taxa from the Southern Hemisphere. Species in this group do not belong to subg. Telamonia, where C. rufus was initially placed. Cortinarius rufus and the newly described C. subrufus form a basal clade within sect. Austroamericani that has a weakly supported relationship with the core clade. Because the two species are morphologically similar to species from the core clade and share their distribution and Nothofagaceae associations, we include them here as part of sect. Austroamericani sensu lato (s.l.) until more material is available to refine the delimitation.


Assuntos
Cortinarius/classificação , Florestas , Filogenia , Chile , Cortinarius/isolamento & purificação , Código de Barras de DNA Taxonômico , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fagales , Variação Genética , Técnicas de Tipagem Micológica , Análise de Sequência de DNA , Especificidade da Espécie
14.
Front Microbiol ; 9: 1557, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061872

RESUMO

Species of Ganoderma, commonly called reishi (in Japan) or lingzhi (in China), have been used in traditional medicine for thousands of years, and their use has gained interest from pharmaceutical industries in recent years. Globally, the taxonomy of Ganoderma species is chaotic, and the taxon name Ganoderma lucidum has been used for most laccate (shiny) Ganoderma species. However, it is now known that G. lucidum sensu stricto has a limited native distribution in Europe and some parts of China. It is likely that differences in the quality and quantity of medicinally relevant chemicals occur among Ganoderma species. To determine what species are being sold in commercially available products, twenty manufactured products (e.g., pills, tablets, teas, etc.) and seventeen grow your own (GYO) kits labeled as containing G. lucidum were analyzed. DNA was extracted, and the internal transcribed spacer (ITS) region and translation elongation factor 1-alpha (tef1α) were sequenced with specific fungal primers. The majority (93%) of the manufactured reishi products and almost half of the GYO kits were identified as Ganoderma lingzhi. G. lingzhi is native to Asia and is the most widely cultivated and studied taxon for medicinal use. Illumina MiSeq sequencing of the ITS1 region was performed to determine if multiple Ganoderma species were present. None of the manufactured products tested contained G. lucidum sensu stricto, and it was detected in only one GYO kit. G. lingzhi was detected in most products, but other Ganoderma species were also present, including G. applanatum, G. australe, G. gibbosum, G. sessile, and G. sinense. Our results indicate that the content of these products vary and that better labeling is needed to inform consumers before these products are ingested or marketed as medicine. Of the 17 GYO kits tested, 11 kits contained Ganoderma taxa that are not native to the United States. If fruiting bodies of exotic Ganoderma taxa are cultivated, these GYO kits will likely end up in the environment. The effects of these exotic species to natural ecosystems needs investigation.

15.
Fungal Biol ; 121(8): 638-651, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28705393

RESUMO

Amanita is a diverse and cosmopolitan genus of ectomycorrhizal fungi. We describe Amanita nouhrae sp. nov., a new hypogeous ('truffle-like') species associated with Nothofagus antarctica in northern Patagonia. This constitutes the first report of a sequestrate Amanita from the Americas. Thick-walled basidiospores ornamented on the interior spore wall ('crassospores') were observed consistently in A. nouhrae and its sister epigeous taxon Amanita morenoi, a rarely collected but apparently common species from northern Patagonia that has sometimes been misidentified as the Australian taxon Amanita umbrinella. Nuclear 18S and 28S ribosomal DNA and mitochondrial 16S and 26S DNA placed these two species in a southern temperate clade within subgenus Amanita, together with other South American and Australian species. Based on a dated genus-level phylogeny, we estimate that the southern temperate clade may have originated near the Eocene/Oligocene boundary (ca. 35 Ma ± 10 Ma). This date suggests a broadly distributed ancestor in the Southern Hemisphere, which probably diversified as a result of continental drift, as well as the initiation of the Antarctic glaciation. By comparison, we show that this clade follows an exceptional biogeographic pattern within a genus otherwise seemingly dominated by Northern Hemisphere dispersal.


Assuntos
Amanita/classificação , Amanita/isolamento & purificação , Filogeografia , Amanita/genética , Amanita/crescimento & desenvolvimento , Argentina , Clima , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fagales/microbiologia , RNA Ribossômico/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Esporos Fúngicos/citologia
16.
Fungal Biol ; 121(10): 876-889, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28889912

RESUMO

The descolea clade includes species of ectomycorrhizal basidiomycetes in the genera Descolea, Setchelliogaster, Descomyces, and Timgrovea that are known primarily from the Southern Hemisphere. Taxa in this group produce basidiomes that range in morphology from typical epigeous mushrooms (Descolea) and secotioid taxa (Setchelliogaster) to fully gasteroid species (Descomyces and Timgrovea). High intraspecific morphological variation has been reported in several species within this clade, suggesting that careful morphological and molecular studies are needed to refine species concepts. Molecular analyses of fresh Patagonian collections in conjunction with taxonomic studies have confirmed high variability in key morphological features, including overall sporocarp form, spore shape and dimensions, universal veil remnants, and cuticle configuration. Based on our synthesis, we emend the genus Descolea to include sequestrate species. We describe the new sequestrate taxon Descolea inferna sp. nov. from Nothofagaceae forests in Patagonia and we propose Cortinarius squamatus as a synonym of our new combination Descolea brunnea. We also formalize the identity of Descolea pallida as a synonym of Descolea antarctica and provide new specimens of Cortinarius archeuretus, a species that has not been encountered since the original discovery during the expeditions of Roland Thaxter in 1905-1906. Here we re-describe and transfer this species to Descolea as D. archeureta. We also discuss diagnostic features that can be used to delimitate the four known South American taxa in the descolea clade.


Assuntos
Agaricales/classificação , Fagales/microbiologia , Agaricales/genética , Agaricales/crescimento & desenvolvimento , Argentina , Cortinarius/classificação , Cortinarius/genética , Cortinarius/crescimento & desenvolvimento , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/isolamento & purificação , Filogenia , Alinhamento de Sequência
17.
IMA Fungus ; 7(1): 59-73, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27433441

RESUMO

The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces.

18.
IMA Fungus ; 7(2): 239-245, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27990330

RESUMO

Kombocles bakaiana gen. sp. nov. is described as new to science. This sequestrate, partially hypogeous fungus was collected around and within the stilt root system of an ectomycorrhizal (ECM) tree of the genus Uapaca (Phyllanthaceae) in a Guineo-Congolian mixed tropical rainforest in Cameroon. Molecular data place this fungus in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) with no clear relationship to previously described taxa within the family. Macro- and micromorphological characters, habitat, and DNA sequence data are provided. Unique morphological features and a molecular phylogenetic analysis of 304 sequences across the Boletales justify the recognition of the new taxa. Kombocles bakaiana is the fourth sequestrate Boletaceae described from the greater African tropics, and the first to be described from Cameroon.

19.
Evolution ; 68(6): 1576-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24495034

RESUMO

Fungal mycoparasitism-fungi parasitizing other fungi-is a common lifestyle in some basal lineages of the basidiomycetes, particularly within the Tremellales. Relatively nonaggressive mycoparasitic fungi of this group are in general highly host specific, suggesting cospeciation as a plausible speciation mode in these associations. Species delimitation in the Tremellales is often challenging because morphological characters are scant. Host specificity is therefore a great aid to discriminate between species but appropriate species delimitation methods that account for actual diversity are needed to identify both specialist and generalist taxa and avoid inflating or underestimating diversity. We use the Biatoropsis-Usnea system to study factors inducing parasite diversification. We employ morphological, ecological, and molecular data-methods including genealogical concordance phylogenetic species recognition (GCPSR) and the general mixed Yule-coalescent (GMYC) model-to assess the diversity of fungi currently assigned to Biatoropsis usnearum. The degree of cospeciation in this association is assessed with two cophylogeny analysis tools (ParaFit and Jane 4.0). Biatoropsis constitutes a species complex formed by at least seven different independent lineages and host switching is a prominent force driving speciation, particularly in host specialists. Combining ITS and nLSU is recommended as barcode system in tremellalean fungi.


Assuntos
Basidiomycota/genética , Evolução Molecular , Especificidade de Hospedeiro , Filogenia , Polimorfismo Genético , Usnea/genética , Basidiomycota/classificação , Basidiomycota/fisiologia , Genes Fúngicos , Usnea/classificação , Usnea/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa