RESUMO
First-line anti-tuberculosis (TB) drugs are commonly used to treat TB worldwide, leading to more contaminated wastewater being widely discharged into aquatic environments. However, studies of mixture interactions of anti-TB drugs and their residues in aquatic environments are scarce. This study aimed to determine the toxic interactions of anti-TB drugs-isoniazid (INH), rifampicin (RMP), and ethambutol (EMB)-in binary and ternary mixtures on Daphnia magna and used the epidemiology of TB history to construct epidemiology-based wastewater monitoring for assessing the environmental release of residues and related ecological risks. The acute immobilization of median effect concentrations (EC50) was 25.6 mg L-1 for INH, 80.9 mg L-1 for RMP, and 188.8 mg L-1 for EMB, as toxic units (TUs) for assessing mixture toxicity. The ternary mixture exhibited the lowest TUs at 50 % effects with 1.12, followed by 1.28 for RMP + EMB, 1.54 for INH + RMP, and 1.93 for INH + EMB, indicating antagonistic interactions. Nevertheless, the combination index (CBI) was used to examine the mixture toxicity in response to immobilization, revealing that the ternary mixture of CBI ranged from 1.01 to 1.08, tending to have a nearly additive effect when suffering >50 % effect (at high concentration levels). The forecasted environmentally relevant concentrations of anti-TB drugs have been on downward trends with ng L-1 level from 2020 to 2030 in Kaohsiung, Taiwan. Although ecotoxicological risks from the wastewater treatment plant and receiving water in the field were slightly greater than the prediction from epidemiology-based wastewater monitoring, there were no risk concerns. Here, we achieved the establishment of evidence that anti-TB drug mixtures' interaction and epidemiological-based monitoring support a systematic approach, resolving the absence of the mixture toxicity information for anti-TB mixture risk assessment in aquatic environments.
Assuntos
Antituberculosos , Águas Residuárias , Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Etambutol/uso terapêuticoRESUMO
The Pteris fauriei group (Pteridaceae) has a wide distribution in Eastern Asia and includes 18 species with similar but varied morphology. We collected more than 300 specimens of the P. fauriei group and determined ploidy by flow cytometry and inferred phylogenies by molecular analyses of chloroplast and nuclear DNA markers. Our results reveal a complicated reticulate evolution, consisting of seven parental taxa and 58 hybrids. The large number of hybrid taxa have added significant morphological complexity to the group leading to difficult taxonomic issues. The hybrids generally had broader ranges and more populations than their parental taxa. Genetic combination of different pairs of parental species created divergent phenotypes of hybrids, exhibited by both morphological characteristics and ecological fidelities. Niche novelty could facilitate hybrid speciation. Apogamy is common in this group and potentially contributes to the sustainability of the whole group. We propose that frequent hybridizations among members of the P. fauriei group generate and maintain genetic diversity, via novel genetic combinations, niche differentiation, and apogamy.