Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908056

RESUMO

Humans are extensively exposed to organophosphate flame retardants (OPFRs), an emerging group of organic contaminants with potential nephrotoxicity. Nevertheless, the estimated daily intake (EDI) and prognostic impacts of OPFRs have not been assessed in individuals with chronic kidney disease (CKD). In this 2-year longitudinal study of 169 patients with CKD, we calculated the EDIs of five OPFR triesters from urinary biomonitoring data of their degradation products and analyzed the effects of OPFR exposure on adverse renal outcomes and renal function deterioration. Our analysis demonstrated universal OPFR exposure in the CKD population, with a median EDIΣOPFR of 360.45 ng/kg body weight/day (interquartile range, 198.35-775.94). Additionally, our study revealed that high tris(2-chloroethyl) phosphate (TCEP) exposure independently correlated with composite adverse events and composite renal events (hazard ratio [95 % confidence interval; CI]: 4.616 [1.060-20.096], p = 0.042; 3.053 [1.075-8.674], p = 0.036) and served as an independent predictor for renal function deterioration throughout the study period, with a decline in estimated glomerular filtration rate of 4.127 mL/min/1.73 m2 (95 % CI, -8.127--0.126; p = 0.043) per log ng/kg body weight/day of EDITCEP. Furthermore, the EDITCEP and EDIΣOPFR were positively associated with elevations in urinary 8-hydroxy-2'-deoxyguanosine and kidney injury molecule-1 during the study period, indicating the roles of oxidative damage and renal tubular injury in the nephrotoxicity of OPFR exposure. To conclude, our findings highlight the widespread OPFR exposure and its possible nephrotoxicity in the CKD population.


Assuntos
Retardadores de Chama , Organofosfatos , Insuficiência Renal Crônica , Humanos , Retardadores de Chama/toxicidade , Estudos Longitudinais , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/urina , Masculino , Feminino , Pessoa de Meia-Idade , Organofosfatos/toxicidade , Organofosfatos/urina , Idoso , Adulto , Rim/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Compostos Organofosforados/urina , Compostos Organofosforados/toxicidade , Monitoramento Ambiental , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina
2.
Front Public Health ; 12: 1340261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525338

RESUMO

Organophosphate flame retardants (OPFRs) are emerging environmental pollutants that can be detected in water, dust, and biological organisms. Certain OPFRs can disrupt lipid metabolism in animal models and cell lines. However, the effects of OPFRs on human lipid metabolism remain unclear. We included 1,580 participants (≥20 years) from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to explore the relationship between OPFR exposure and lipid metabolism biomarkers. After adjusting for confounding factors, results showed that one-unit increases in the log levels of diphenyl phosphate (DPhP) (regression coefficient = -5.755; S.E. = 2.289; p = 0.023) and log bis-(1-chloro-2-propyl) phosphate (BCPP) (regression coefficient = -4.637; S.E. = 2.019; p = 0.036) were negatively associated with the levels of total cholesterol (TC) in all participants. One-unit increases in the levels of DPhP (regression coefficient = -2.292; S.E. = 0.802; p = 0.012), log bis (1,3-dichloro-2-propyl) phosphate (BDCPP) (regression coefficient = -2.046; S.E. = 0.825; p = 0.026), and log bis-2-chloroethyl phosphate (BCEP) (regression coefficient = -2.604; S.E. = 0.704; p = 0.002) were negatively associated with the levels of high-density lipoprotein cholesterol (HDL-C). With increasing quartiles of urine BDCPP levels, the mean TC levels significantly decreased in all participants (p value for trend = 0.028), and quartile increases in the levels of DPhP (p value for trend = 0.01), BDCPP (p value for trend = 0.001), and BCEP (p value for trend<0.001) were negatively corelated with HDL-C, with approximately 5.9, 9.9, and 12.5% differences between the upper and lower quartiles. In conclusion, DPhP, BDCPP, and BCEP were negatively related to HDL-C concentration, whereas DPhP and BCPP levels were negatively associated with TC level. Thus, exposure to OPFRs may interfere with lipid metabolism.


Assuntos
Retardadores de Chama , Organofosfatos , Compostos Organofosforados , Animais , Humanos , Organofosfatos/metabolismo , Retardadores de Chama/metabolismo , Inquéritos Nutricionais , Metabolismo dos Lipídeos , Fosfatos , Colesterol
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa