Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(27): 15437-15442, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571925

RESUMO

Ice amorphization, low- to high-density amorphous (LDA-HDA) transition, as well as (re)crystallization in ice, under compression have been studied extensively due to their fundamental importance in materials science and polyamorphism. However, the nature of the multiple-step "reverse" transformation from metastable high-pressure ice to the stable crystalline form under reduced pressure is not well understood. Here, we characterize the rate and temperature dependence of the structural evolution from ice VII to ice I recovered at low pressure (∼5 mTorr) using in situ time-resolved X-ray diffraction. Unlike previously reported ice VII (or ice VIII)→LDA→ice I transitions, we reveal three temperature-dependent successive transformations: conversion of ice VII into HDA, followed by HDA-to-LDA transition, and then crystallization of LDA into ice I. Significantly, the temperature-dependent characteristic times indicate distinctive thermal activation mechanisms above and below 110-115 K for both ice VIII-to-HDA and HDA-to-LDA transitions. Large-scale molecular-dynamics calculations show that the structural evolution from HDA to LDA is continuous and involves substantial movements of the water molecules at the nanoscale. The results provide a perspective on the interrelationship of polyamorphism and unravel its underpinning complexities in shaping ice-transition kinetic pathways.

2.
Phys Chem Chem Phys ; 24(30): 18119-18123, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35881443

RESUMO

The pressure-induced reaction between xenon (Xe) and other non-inert gas elements and the resultant crystal structures have attracted great interest. In this work, we carried out extensive simulations on the crystal structures of Xe-alkali metal (Xe-AM) systems under high pressures. Among all predicted compounds, KXe and RbXe are found to become stable at a pressure of ∼16 GPa by adopting a cubic symmetry of space group Pm3̄m. The stabilization of KXe and RbXe requires slightly lower pressure compared with that of previously reported CsXe (25 GPa), interestingly, which is in contrast to the electronegativity order of the AMs and unexpected. Our simulations also indicate that all predicted Xe compounds contain negatively charged Xe. Moreover, our in-depth analysis indicates that the occupation of AM d-orbitals plays a critical role in stabilizing these Xe-bearing compounds. These results shed light on the understanding of the reaction between Xe and AMs and the formation mechanism of the resultant crystal structures.

3.
Proc Natl Acad Sci U S A ; 116(19): 9186-9190, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31004055

RESUMO

Graphene-based nanodevices have been developed rapidly and are now considered a strong contender for postsilicon electronics. However, one challenge facing graphene-based transistors is opening a sizable bandgap in graphene. The largest bandgap achieved so far is several hundred meV in bilayer graphene, but this value is still far below the threshold for practical applications. Through in situ electrical measurements, we observed a semiconducting character in compressed trilayer graphene by tuning the interlayer interaction with pressure. The optical absorption measurements demonstrate that an intrinsic bandgap of 2.5 ± 0.3 eV could be achieved in such a semiconducting state, and once opened could be preserved to a few GPa. The realization of wide bandgap in compressed trilayer graphene offers opportunities in carbon-based electronic devices.

4.
Phys Rev Lett ; 126(19): 196404, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34047588

RESUMO

We study pressure-induced isostructural electronic phase transitions in the prototypical mixed valence and strongly correlated material EuO using the global-hybrid density functional theory. The simultaneous presence in the valence of highly localized d- and f-type bands and itinerant s- and p-type states, as well as the half-filled f-type orbital shell with seven unpaired electrons on each Eu atom, have made the description of the electronic features of this system a challenge. The electronic band structure, density of states, and atomic oxidation states of EuO are analyzed in the 0-50 GPa pressure range. An insulator-to-metal transition at about 12 GPa of pressure was identified. The second isostructural transition at approximately 30-35 GPa, previously believed to be driven by an oxidation from Eu(II) to Eu(III), is shown instead to be associated with a change in the occupation of the Eu d orbitals, as can be determined from the analysis of the corresponding atomic orbital populations. The Eu d band is confined by the surrounding oxygens and split by the crystal field, which results in orbitals of e_{g} symmetry (i.e., d_{x^{2}-y^{2}} and d_{2z^{2}-x^{2}-y^{2}}, pointing along the Eu-O direction) being abruptly depopulated at the transition as a means to alleviate electron-electron repulsion in the highly compressed structures.

5.
J Chem Phys ; 154(21): 214104, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34240999

RESUMO

The 57Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals. However, the best numerical agreement is obtained with the B1WC hybrid functional. Extension of the calculations to 350 GPa, a pressure corresponding to the Earth's inner core, predicted the IS range of 0.00 to -0.85 mm/s, covering the span from Fe(0) to Fe(VI) compounds measured at ambient pressure. The calculations also reproduced the pressure trend from polymorphs of prototypical iron oxide minerals, FeO and Fe2O3. Analysis of the electronic structure shows a strong donation of electrons from oxygen to iron at high pressure. The assignment of formal oxidation to the Fe atom becomes ambiguous under this condition.

6.
Nano Lett ; 20(8): 5916-5921, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32578991

RESUMO

Atomically thin diamond, also called diamane, is a two-dimensional carbon allotrope and has attracted considerable scientific interest because of its potential physical properties. However, the successful synthesis of a pristine diamane has up until now not been achieved. We demonstrate the realization of a pristine diamane through diamondization of mechanically exfoliated few-layer graphene via compression. Resistance, optical absorption, and X-ray diffraction measurements reveal that hexagonal diamane (h-diamane) with a bandgap of 2.8 ± 0.3 eV forms by compressing trilayer and thicker graphene to above 20 GPa at room temperature and can be preserved upon decompression to ∼1.0 GPa. Theoretical calculations indicate that a (-2110)-oriented h-diamane is energetically stable and has a lower enthalpy than its few-layer graphene precursor above the transition pressure. Compared to gapless graphene, semiconducting h-diamane offers exciting possibilities for carbon-based electronic devices.

7.
Angew Chem Int Ed Engl ; 60(13): 7234-7244, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33438321

RESUMO

Ultrathin two-dimensional catalysts are attracting attention in the field of electrocatalytic hydrogen evolution. This work describe a composite material design in which CoP nanoparticles doped with Ru single-atom sites supported on carbon dots (CDs) single-layer nanosheets formed by splicing CDs (Ru1 CoP/CDs). Small CD fragments bore abundant functional groups, analogous to pieces of a jigsaw puzzle, and could provide a high density of binding sites to immobilize Ru1 CoP. The single-particle-thick nanosheets formed by splicing CDs acted as supports, which improved the conductivity of the electrocatalyst and the stability of the catalyst during operation. The Ru1 CoP/CDs formed from doping atomic Ru dispersed on CoP showed very high efficiency for the hydrogen evolution reaction (HER) over a wide pH range. The catalyst prepared under optimized conditions displayed outstanding stability and activity: the overpotential for the HER at a current density of 10 mA cm-2 was as low as 51 and 49 mV under alkaline and acidic conditions, respectively. Density functional theory calculations showed that the substituted Ru single atoms lowered the proton-coupled electron transfer energy barrier and promoted H-H bond formation, thereby enhancing catalytic performance for the HER. The findings open a new avenue for developing carbon-based hybridization materials with integrated electrocatalytic performance for water splitting.

8.
Phys Rev Lett ; 125(15): 155702, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095607

RESUMO

High-pressure metallic ß-Sn silicon (Si-II), depending on temperature, decompression rate, stress, etc., may transform to diverse metastable forms with promising semiconducting properties under decompression. However, the underlying mechanisms governing the different transformation paths are not well understood. Here, two distinctive pathways, viz., a thermally activated crystal-crystal transition and a mechanically driven amorphization, were characterized under rapid decompression of Si-II at various temperatures using in situ time-resolved x-ray diffraction. Under slow decompression, Si-II transforms to a crystalline bc8/r8 phase in the pressure range of 4.3-9.2 GPa through a thermally activated process where the overdepressurization and the onset transition strain are strongly dependent on decompression rate and temperature. In comparison, Si-II collapses structurally to an amorphous form at around 4.3 GPa when the volume expansion approaches a critical strain via rapid decompression beyond a threshold rate. The occurrence of the critical strain indicates a limit of the structural metastability of Si-II, which separates the thermally activated and mechanically driven transition processes. The results show the coupled effect of decompression rate, activation barrier, and thermal energy on the adopted transformation paths, providing atomistic insight into the competition between equilibrium and nonequilibrium pathways and the resulting metastable phases.

9.
Nature ; 569(7757): 495-496, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31123359
10.
Inorg Chem ; 58(5): 3550-3557, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30785745

RESUMO

The isostructural dimers of the 1,4-phenylene-bridged bis-1,2,3,5-dithia- and bis-1,2,3,5-diselenadiazolyl diradicals 1,4-S/Se are small band gap semiconductors. The response of their molecular and solid state electronic structures to pressure has been explored over the range 0-10 GPa. The crystal structures, which consist of cofacially aligned (pancake) π-dimers packed into herringbone arrays, experience a continuous, near-isotropic compression. While the intramolecular covalent E-E (E = S/Se) bonds remain relatively unchanged with pressurization, the intradimer E···E separations are significantly shortened. Molecular and band electronic structure calculations using density functional theory methods indicate that compression of the π-dimers leads to a widening of the gap Δ E between the highest occupied and lowest unoccupied molecular orbitals of the dimer, an effect that offsets the expected decrease in the valence-to-conduction band gap Eg occasioned by pressure-induced spreading of the valence and conduction bands. Consistent with the predicted consequences of this competition between intra- and interdimer interactions, variable temperature high pressure conductivity measurements reveal at best an order-of-magnitude increase in conductivity with pressure for the two compounds over the pressure range 0-10 GPa. While a small reduction in the thermal activation energy Eact with increasing pressure is observed, extrapolation of the rate of decrease suggests a projected onset of metallization ( Eact ≈ 0) in excess of 20 GPa.

11.
Proc Natl Acad Sci U S A ; 113(40): 11110-11115, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647887

RESUMO

Structural polymorphism in dense carbon dioxide (CO2) has attracted significant attention in high-pressure physics and chemistry for the past two decades. Here, we have performed high-pressure experiments and first-principles theoretical calculations to investigate the stability, structure, and dynamical properties of dense CO2 We found evidence that CO2-V with the 4-coordinated extended structure can be quenched to ambient pressure below 200 K-the melting temperature of CO2-I. CO2-V is a fully coordinated structure formed from a molecular solid at high pressure and recovered at ambient pressure. Apart from confirming the metastability of CO2-V (I-42d) at ambient pressure at low temperature, results of ab initio molecular dynamics and metadynamics (MD) simulations provided insights into the transformation processes and structural relationship from the molecular to the extended phases. In addition, the simulation also predicted a phase V'(Pna21) in the stability region of CO2-V with a diffraction pattern similar to that previously assigned to the CO2-V (P212121) structure. Both CO2-V and -V' are predicted to be recoverable and hard with a Vicker hardness of ∼20 GPa. Significantly, MD simulations found that the CO2 in phase IV exhibits large-amplitude bending motions at finite temperatures and high pressures. This finding helps to explain the discrepancy between earlier predicted static structures and experiments. MD simulations clearly indicate temperature effects are critical to understanding the high-pressure behaviors of dense CO2 structures-highlighting the significance of chemical kinetics associated with the transformations.

12.
Phys Rev Lett ; 121(22): 225703, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547611

RESUMO

Pressure-induced formation of amorphous ices and the low-density amorphous (LDA) to high-density amorphous (HDA) transition have been believed to occur kinetically below a crossover temperature (T_{c}) above which thermodynamically driven crystalline-crystalline (e.g., ice I_{h}-to-II) transitions and crystallization of HDA and LDA are dominant. Here we show compression-rate-dependent formation of a high-density noncrystalline (HDN) phase transformed from ice I_{c} above T_{c}, bypassing crystalline-crystalline transitions under rapid compression. Rapid decompression above T_{c} transforms HDN to a low-density noncrystalline (LDN) phase which crystallizes spontaneously into ice I_{c}, whereas slow decompression of HDN leads to direct crystallization. The results indicate the formation of HDA and the HDN-to-LDN transition above T_{c} are results of competition between (de)compression rate, energy barrier, and temperature. The crossover temperature is shown to have an exponential relationship with the threshold compression rate. The present results provide important insight into the dynamic property of the phase transitions in addition to the static study.

13.
Chemistry ; 24(8): 1769-1778, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29205558

RESUMO

The recent discovery of superconductivity above 200 K in hydrogen sulfide under high pressure marks a milestone in superconductor research. Not only does its critical temperature Tc exceed the previous record in cuprates by more than 50 K, the superconductivity in hydrogen sulfide also exhibits convincing evidence that it is of conventional phonon-mediated type. Moreover, this is the first time that a previously unknown high-Tc superconductor is predicted by theory and afterwards verified by experiment. In this Minireview, we survey the progress made in the last three years in understanding this novel material, and discuss unsolved problems and possible developments to encourage future investigations.

14.
Inorg Chem ; 57(8): 4757-4770, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29620356

RESUMO

In pursuit of closed-shell building blocks for single-component organic semiconductors and metals, we have prepared benzoquino-bis-1,2,3-thiaselenazole QS, a heterocyclic selenium-based zwitterion with a small gap (λmax = 729 nm) between its highest occupied and lowest unoccupied molecular orbitals. In the solid state, QS exists in two crystalline phases and one nanocrystalline phase. The structures of the crystalline phases (space groups R3 c and P21/ c) have been determined by high-resolution powder X-ray diffraction methods at ambient and elevated pressures (0-15 GPa), and their crystal packing patterns have been compared with that of the related all-sulfur zwitterion benzoquino-bis-1,2,3-dithiazole QT (space group Cmc21). Structural differences between the S- and Se-based materials are interpreted in terms of local intermolecular S/Se···N'/O' secondary bonding interactions, the strength of which varies with the nature of the chalcogen (S vs Se). While the perfectly two-dimensional "brick-wall" packing pattern associated with the Cmc21 phase of QT is not found for QS, all three phases of QS are nonetheless small band gap semiconductors, with σRT ranging from 10-5 S cm-1 for the P21/ c phase to 10-3 S cm-1 for the R3 c phase. The bandwidths of the valence and conduction bands increase with applied pressure, leading to an increase in conductivity and a decrease in thermal activation energy Eact. For the R3 c phase, band gap closure to yield an organic molecular metal with a σRT of ∼102 S cm-1 occurs at 6 GPa. Band gaps estimated from density functional theory band structure calculations on the ambient- and high-pressure crystal structures of QT and QS correlate well with those obtained experimentally.

15.
J Am Chem Soc ; 139(6): 2180-2183, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28140576

RESUMO

Benzoquino-bis-1,2,3-dithiazole 5 is a closed shell, antiaromatic 16π-electron zwitterion with a small HOMO-LUMO gap. Its crystal structure consists of planar ribbon-like molecular arrays packed into offset layers to generate a "brick-wall" motif with strong 2D interlayer electronic interactions. The spread of the valence and conduction bands, coupled with the narrow HOMO-LUMO gap, affords a small band gap semiconductor with σRT = 1 × 10-3 S cm-1 and Eact = 0.14 eV for transport within the brick-wall arrays. Closure of the band gap to form an all-organic molecular metal with σRT > 101 S cm-1 can be achieved by the application of pressure to 8 GPa.

16.
J Am Chem Soc ; 139(4): 1625-1635, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28117984

RESUMO

A critical feature of the electronic structure of oxobenzene-bridged bisdithiazolyl radicals 2 is the presence of a low-lying LUMO which, in the solid state, improves charge transport by providing additional degrees of freedom for electron transfer. The magnitude of this multiorbital effect can be fine-tuned by variations in the π-electron releasing/accepting nature of the basal ligand. Here we demonstrate that incorporation of a nitro group significantly stabilizes the LUMO, and hence lowers Ueff, the effective Coulombic barrier to charge transfer. The effect is echoed, at the molecular level, in the observed trend in Ecell, the electrochemical cell potential for 2 with R = F, H and NO2. The crystal structures of the MeCN and EtCN solvates of 2 with R = NO2 have been determined. In the EtCN solvate the radicals are dimerized, but in the MeCN solvate the radicals form superimposed and evenly spaced π-stacked arrays. This highly 1D material displays Pauli-like temperature independent paramagnetic behavior, with χTIP = 6 × 10-4 emu mol-1, but its charge transport behavior, with σRT near 0.04 S cm-1 and Eact = 0.05 eV, is more consistent with a Mott insulating ground state. High pressure crystallographic measurements confirm uniform compression of the π-stacked architecture with no phase change apparent up to 8 GPa. High pressure conductivity measurements indicate that the charge gap between the Mott insulator and metallic states can be closed near 6 GPa. These results are discussed in the light of DFT band structure calculations.

17.
Phys Rev Lett ; 119(7): 075302, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28949699

RESUMO

High P-T Raman spectra of hydrogen in the vibron and lattice mode regions were measured up to 300 GPa and 900 K using externally heated diamond anvil cell techniques. A new melting line determined from the disappearance of lattice mode excitations was measured directly for the first time above 140 GPa. The results differ from theoretical predictions and extrapolations from lower pressure melting relations. In addition, discontinuities in Raman frequencies are observed as a function of pressure and temperature indicative of phase transition at these conditions. The appearance of a new Raman feature near 2700 cm^{-1} at ∼300 GPa and 370 K indicates the transformation to a new crystalline phase. Theoretical calculations of the spectrum suggest the new phase is the proposed Cmca-4 metallic phase. The transition pressure is close to that of a recently reported transition observed on dynamic compression.

18.
Phys Rev Lett ; 128(9): 099702, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35302818
19.
Phys Rev Lett ; 119(13): 135701, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341714

RESUMO

We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

20.
Inorg Chem ; 56(13): 7449-7453, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28598603

RESUMO

Using global structure searches, we have explored the structural stability of CaB3N3, a compound analogous to CaC6, under pressure. There are two high-pressure phases with space groups R3c and Amm2 that were found to be stable between 29 and 42 GPa, and above 42 GPa, respectively. The two phases show different structural frameworks, analogous to graphitic CaC6. Phonon calculations confirm that both structures are also dynamically stable at high pressures. The electronic structure calculations show that the R3c phase is a semiconductor with a band gap of 2.21 eV and that the Amm2 phase is a semimetal. These findings help advance our understanding of the Ca-B-N ternary system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa