Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Biol ; 288(3): 391-401, 1999 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-10329149

RESUMO

On linear single-stranded DNA, RecA filaments assemble and disassemble in the 5' to 3' direction. Monomers (or other units) associate at one end and dissociate from the other. ATP hydrolysis occurs throughout the filament. Dissociation can result when ATP is hydrolyzed by the monomer at the disassembly end. We have developed a comprehensive model for the end-dependent filament disassembly process. The model accounts not only for disassembly, but also for the limited reassembly that occurs as DNA is vacated by disassembling filaments. The overall process can be monitored quantitatively by following the resulting decline in DNA-dependent ATP hydrolysis. The rate of disassembly is highly pH dependent, being negligible at pH 6 and reaching a maximum at pH values above 7. 5. The rate of disassembly is not significantly affected by the concentration of free RecA protein within the experimental uncertainty. For filaments on single-stranded DNA, the monomer kcat for ATP hydrolysis is 30 min-1, and disassembly proceeds at a maximum rate of 60-70 monomers per minute per filament end. The latter rate is that predicted if the ATP hydrolytic cycles of adjacent monomers are not coupled in any way.


Assuntos
DNA de Cadeia Simples/química , DNA Viral/química , Recombinases Rec A/química , Trifosfato de Adenosina/metabolismo , Bacteriófago phi X 174/genética , DNA de Cadeia Simples/metabolismo , DNA Viral/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Ligação Proteica , Recombinases Rec A/metabolismo , Temperatura
2.
J Mol Biol ; 283(4): 757-69, 1998 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-9790838

RESUMO

Formation of many site-specific protein-nucleic acid complexes involves sequential conformational changes subsequent to initial binding which create functionally active assemblies. Characterization of population distributions and structural characteristics of intermediate and product conformations is necessary to understand both the mechanisms and the thermodynamics of these processes. For these purposes, here we develop the quantitative method of multiple hit footprinting (MHF), where chemical or enzymatic probing is performed as a function of either concentrations of the footprinting agent and/or time of exposure to it, in the multiple hit regime where many of the population or subpopulation of reactive DNA molecules are modified at more than one site. Properly controlled MHF experiments yield both the population distribution of different conformers and reactivity rate constants of the footprinting agent at all reactive positions in each conformer, which may be interpreted in terms of the accessibility of the site or the local concentration of the reagent. MHF experiments are particularly well-suited for dissecting effects at sites where unbound DNA is non-reactive and bound DNA is reactive with base-specific probes (e.g. KMnO4, DMS). We suggest that this method will also be applicable to analysis of enhancements in reactivity of other footprinting agents (e.g. DNase I, HO.). To demonstrate the utility of the MHF analysis, we quantify fragment distributions and individual site reactivities from multiple-hit KMnO4 footprinting of the non-template strand of Esigma70 RNA polymerase-lambdaPR promoter DNA complexes populated at binding equilibrium at 37 degreesC and transiently populated at a fixed time after a temperature downshift from 37 degreesC to 0 degreesC. For this system, a MHF analysis directly addresses the following questions: (i) what fraction of the population of promoter DNA molecules is open in the vicinity of the transcription start site (RPo) both at 37 degreesC and (transiently) after a downshift to 0 degreesC; (ii) does opening of the start site region in RPo occur entirely in one mechanistic step at the lambdaPR promoter and (iii) does the structure of RPo vary with temperature? In addition, we use the MHF-determined population distribution of KMnO4-reactive (RPo) and non-reactive promoter DNA to normalize the biphasic kinetics of decay of RPo to free promoter DNA after a 37 degrees to 0 degreesC temperature downshift, and thereby characterize the kinetics of the conformational changes involved in forming RPo.


Assuntos
Pegada de DNA/métodos , RNA Polimerases Dirigidas por DNA/química , DNA/química , Escherichia coli/enzimologia , Conformação de Ácido Nucleico , Cinética , Oligodesoxirribonucleotídeos/análise , Permanganato de Potássio/metabolismo , Temperatura
3.
J Mol Biol ; 310(2): 379-401, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11428896

RESUMO

Site-specific DNA binding of architectural protein integration host factor (IHF) is involved in formation of functional multiprotein-DNA assemblies in Escherichia coli, while non-specific binding of IHF and other histone-like proteins serves to structure the nucleoid. Here, we report an isothermal titration calorimetry study of the thermodynamics of binding IHF to a 34 bp fragment composed entirely of the specific H' site from lambda-phage DNA. At low to moderate [K(+)] (60-100 mM), strong competition is observed between specific and non-specific binding as a result of a low specificity ratio (approximately 10(2)) and a very small non-specific site size. In this [K(+)] range, both specific and non-specific binding are enthalpy-driven, with large negative enthalpy, entropy and heat capacity changes and binding constants that are insensitive to [K(+)]. Above 100 mM K(+), only specific binding is observed, and both the binding constant and the magnitudes of enthalpy, entropy and heat capacity changes all decrease strongly with increasing [K(+)]. When interpreted in the context of the structure of the specific complex, the thermodynamics provide compelling evidence for a previously unrecognized design principle by which proteins that form extensive binding interfaces with nucleic acids control binding constants, binding site sizes and effects of temperature and ion concentrations on stability and specificity. We propose that up to 22 of the 23 IHF cationic side-chains that are located within 6 A of DNA phosphate oxygen atoms in the complex, are masked in the absence of DNA by pairing with anionic carboxylate groups in intramolecular salt-bridges (dehydrated ion-pairs). These salt-bridges increase in stability with increasing temperature and decreasing [K(+)]. To explain the unusual thermodynamics of IHF-DNA interactions, we propose that both specific and non-specific binding at low [K(+)] require disruption of salt-bridges (as many as 18 for specific binding) whereupon many of the unmasked charged groups hydrate and the cationic groups interact with DNA. From structural or thermodynamic parallels with IHF, we propose that large-scale coupling of disruption of protein salt-bridges to DNA binding is significant for other large-interface DNA wrapping proteins including the nucleosome, lac repressor core tetramer, RNA polymerase core protein, HU and SSB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bacteriófago lambda/genética , DNA Viral/metabolismo , Escherichia coli/química , Soluções Tampão , Calorimetria , Simulação por Computador , DNA Viral/química , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Entropia , Temperatura Alta , Fatores Hospedeiros de Integração , Modelos Moleculares , Conformação de Ácido Nucleico , Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Prótons , Sais/farmacologia , Eletricidade Estática , Especificidade por Substrato , Titulometria , Ultracentrifugação
4.
J Mol Biol ; 267(5): 1186-206, 1997 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-9150406

RESUMO

What are the thermodynamic consequences of the stepwise conversion of a highly specific (consensus) protein-DNA interface to one that is nonspecific? How do the magnitudes of key favorable contributions to complex stability (burial of hydrophobic surfaces and reduction of DNA phosphate charge density) change as the DNA sequence of the specific site is detuned? To address these questions we investigated the binding of lac repressor (LacI) to a series of 40 bp fragments carrying symmetric (consensus) and variant operator sequences over a range of temperatures and salt concentrations. Variant DNA sites contained symmetrical single and double base-pair substitutions at positions 4 and/or 5 [sequence: see text] in each 10 bp half site of the symmetric lac operator (Osym). Non-specific interactions were examined using a 40 bp non-operator DNA fragment. Disruption of the consensus interface by a single symmetrical substitution reduces the observed equilibrium association constant (K(obs)) for Osym by three to four orders of magnitude; double symmetrical substitutions approach the six orders in magnitude difference between specific and non-specific binding to a 40 bp fragment. At these adjacent positions in the consensus site, the free energy effects of multiple substitutions are non-additive: the first reduces /deltaG(obs)o/ by 3 to 5 kcal mol(-1), approximately halfway to the non-specific level, whereas the second is less deleterious, reducing /deltaG(obs)o/ by less than 3 kcal mol(-1). Variant-specific dependences of K(obs) on temperature and salt concentration characterize these LacI-operator interactions. In general, binding constants and standard free energies of binding both exhibit characteristic extrema near 290 K. As a consequence, both the enthalpic and entropic contributions to stability of Osym and variant complexes change from positive (i.e. entropy driven) at lower temperatures to negative (i.e. enthalpy driven) at higher temperatures, indicating that the heat capacity change upon binding, deltaC(obs)o, is large and negative. In general, /deltaC(obs)o/ decreases as the specificity and stability of the variant complex decreases. Stabilities of complexes of LacI with Osym and all variant operators are strongly [salt]-dependent. Binding constants for the variant complexes exhibit a power-dependence on [salt] that is larger in magnitude (i.e. more negative) than for Osym, but no obvious trend relates changes in contributions from the polyelectrolyte effect and the observed reductions in stability (delta deltaG(obs)o). These variant-specific thermodynamic signatures provide novel insights into the consequences of converting a consensus interface to a less specific one; such insights are not obtained from comparisons at the level of delta deltaG(obs)o. We propose that this variant-specific behavior arises from a strong effect of operator sequence on the extent of induced conformational changes in the protein (and possibly also in the DNA site) which accompany binding.


Assuntos
Proteínas de Bactérias/metabolismo , Sequência Consenso , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli , Regiões Operadoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Ligação Competitiva , DNA/química , Proteínas de Ligação a DNA/química , Eletrólitos , Óperon Lac , Repressores Lac , Modelos Químicos , Nucleoproteínas/química , Ligação Proteica , Dobramento de Proteína , Proteínas Repressoras/química , Termodinâmica
5.
J Mol Biol ; 283(4): 741-56, 1998 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-9790837

RESUMO

Kinetic studies of formation and dissociation of open-promoter complexes (RPo) involving Esigma70 RNA polymerase (R) and the lambdaPR promoter (P) demonstrate the existence of two kinetically significant intermediates, designated I1 and I2, and facilitate the choice of conditions under which each accumulates. For such conditions, we report the results of equilibrium and transient DNase I and KMnO4 footprinting studies which characterize I1 and I2. At 0 degreesC, where extrapolation of equilibrium data indicates I1 is the dominant complex, DNA bases in the vicinity of the transcription start site (+1) do not react with KMnO4, indicating that this region is closed in I1. However, the DNA backbone in I1 is extensively protected from DNase I cleavage; the DNase I footprint extends approximately 30 bases downstream and at least approximately 40 bases upstream from the start site. I1 has a short lifetime (

Assuntos
Pegada de DNA , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/enzimologia , Regiões Promotoras Genéticas/genética , Bacteriófago lambda/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Desoxirribonuclease I/metabolismo , Cinética , Conformação de Ácido Nucleico , Permanganato de Potássio/metabolismo , Temperatura , Transcrição Gênica/genética
6.
J Mol Biol ; 260(5): 697-717, 1996 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-8709149

RESUMO

The interaction of lac operator DNA with lac repressor (LacI) is a classic example of a genetic regulatory switch. To dissect the role of stoichiometry, subunit association, and effects of DNA length in positioning this switch, we have determined binding isotherms for the interaction of LacI with a high affinity (Osym) operator on linearized plasmid (2500 bp) DNA over a wide range of macromolecular concentrations (10(-14) to 10(-8) M). Binding data were analyzed using a thermodynamic model involving four equilibria: dissociation of tetramers (T) into dimers (D), and binding of operator-containing plasmid DNA (O) to dimers and tetramers to form three distinct complexes, DO, TO, and TO2. Over the range of concentrations of repressor, operator, and salt (0.075 M K+ to 0.40 M K+) investigated, we find no evidence for any significant thermodynamic effect of LacI dimers. Instead, all isotherms can be interpreted in terms of just two equilibria, involving only T and the TO and TO2 complexes. As a reference binding equilibrium, which we propose must approximate the DO binding interaction, we compare the plasmid Osym results with our extensive studies of the binding of a 40 bp Osym DNA fragment to LacI. On this basis, we obtain a lower bound on the LacI dimer-tetramer equilibrium constant and values of the equilibrium constants for formation of TO and TO2 complexes. At a salt concentration of 0.40 M, the Osym plasmid binding data are consistent with a model with two independent and identical binding sites for operator per LacI tetramer, in which the binding to a site on the tetramer is only slightly more favorable than the reference binding interaction. Increasingly large deviations from the independent-site model are observed as the salt concentration is reduced; binding of a second operator to from TO2 becomes strongly disfavored relative to formation of TO at low salt concentrations (0.075 to 0.125 M). In addition, binding of both the first and second plasmid operator DNA molecules to the tetramer becomes increasingly more favorable than the reference binding interaction as [K+] is reduced from 0.40 M to 0.125 M. At 0.075 M K+, however, the strength of binding of the second plasmid operator DNA to the LacI tetramer is dramatically reduced; this interaction is much less favorable than binding the first plasmid operator DNA, and becomes much less favorable than the reference binding interaction. We propose that these differences arise from changes in the nature of the TO and TO2 complexes with decreasing salt concentration. At low salt concentration, we suggest the hypothesis that flanking non-operator sequences bind non-specifically (coulombically) by local wrapping, and that distant regions of non-operator DNA occupy the second operator-binding site by looping. We propose that wrapping stabilizes both 1:1 and 2:1 complexes at low salt concentration, and that looping stabilizes the 1:1 complex but competitively destabilizes the 2:1 TO2 complex at low salt concentration. These effects must play a role in adjusting the stability and structure of the LacI-lac operator repression complex as the cytoplasmic [K+] varies in response to changes in extracellular osmolarity.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Óperon Lac , Regiões Operadoras Genéticas , Plasmídeos/genética , Proteínas Repressoras/metabolismo , Escherichia coli/metabolismo , Repressores Lac , Modelos Químicos , Ligação Proteica , Conformação Proteica , Titulometria
7.
J Mol Biol ; 294(3): 639-55, 1999 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-10610786

RESUMO

In our studies of lac repressor tetramer (T)-lac operator (O) interactions, we observed that the presence of extended regions of non-operator DNA flanking a single lac operator sequence embedded in plasmid DNA produced large and unusual cooperative and anticooperative effects on binding constants (Kobs) and their salt concentration dependences for the formation of 1:1 (TO) and especially 1:2 (TO2) complexes. To explore the origin of this striking behavior we report and analyze binding data on 1:1 (TO) and 1:2 (TO2) complexes between repressor and a single O(sym) operator embedded in 40 bp, 101 bp, and 2514 bp DNA, over very wide ranges of [salt]. We find large interrelated effects of flanking DNA length and [salt] on binding constants (K(TO)obs, K(TO2)obs) and on their [salt]-derivatives, and quantify these effects in terms of the free energy contributions of two wrapping modes, designated local and global. Both local and global wrapping of flanking DNA occur to an increasing extent as [salt] decreases. Global wrapping of plasmid-length DNA is extraordinarily dependent on [salt]. We propose that global wrapping is driven at low salt concentration by the polyelectrolyte effect, and involves a very large number (>/similar 20) of coulombic interactions between DNA phosphates and positively charged groups on lac repressor. Coulombic interactions in the global wrap must involve both the core and the second DNA-binding domain of lac repressor, and result in a complex which is looped by DNA wrapping. The non-coulombic contribution to the free energy of global wrapping is highly unfavorable ( approximately +30-50 kcal mol(-1)), which presumably results from a significant extent of DNA distortion and/or entropic constraints. We propose a structural model for global wrapping, and consider its implications for looping of intervening non-operator DNA in forming a complex between a tetrameric repressor (LacI) and one multi-operator DNA molecule in vivo and in vitro. The existence of DNA wrapping in LacI-DNA interactions motivates the proposal that most if not all DNA binding proteins may have evolved the capability to wrap and thereby organize flanking regions of DNA.


Assuntos
Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli , Óperon Lac , Conformação de Ácido Nucleico , Proteínas Repressoras/metabolismo , Sítios de Ligação , Repressores Lac , Modelos Moleculares , Potássio/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Termodinâmica
8.
Biophys J ; 76(3): 1320-9, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10049315

RESUMO

A novel analytical method based on the exact solution of equations of kinetics of unbranched first- and pseudofirst-order mechanisms is developed for application to the process of Esigma70 RNA polymerase (R)-lambdaPR promoter (P) open complex formation, which is described by the minimal three-step mechanism with two kinetically significant intermediates (I1, I2), [equation: see text], where the final product is an open complex RPo. The kinetics of reversible and irreversible association (pseudofirst order, [R] >> [P]) to form long-lived complexes (RPo and I2) and the kinetics of dissociation of long-lived complexes both exhibit single exponential behavior. In this situation, the analytical method provides explicit expressions relating observed rate constants to the microscopic rate constants of mechanism steps without use of rapid equilibrium or steady-state approximations, and thereby provides a basis for interpreting the composite rate constants of association (ka), isomerization (ki), and dissociation (kd) obtained from experiment for this or any other sequential mechanism of any number of steps. In subsequent papers, we apply this formalism to analyze kinetic data obtained in the reversible and irreversible binding regimes of Esigma70 RNA polymerase (R)-lambdaP(R) promoter (P) open complex formation.


Assuntos
Bacteriófago lambda/genética , DNA Viral/genética , DNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Fenômenos Biofísicos , Biofísica , DNA Viral/química , RNA Polimerases Dirigidas por DNA/química , Cinética , Substâncias Macromoleculares , Matemática , Modelos Biológicos , Fator sigma/química
9.
Biophys J ; 81(4): 1960-9, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11566770

RESUMO

Many studies of specific protein-nucleic acid binding use short oligonucleotides or restriction fragments, in part to minimize the potential for nonspecific binding of the protein. However, when the specificity ratio is low, multiple nonspecifically bound proteins may occupy the region of DNA corresponding to one specific site; this situation was encountered in our recent calorimetric study of binding of integration host factor (IHF) protein to its specific 34-bp H' DNA site. Here, beginning from the analytical McGhee and von Hippel infinite-lattice nonspecific binding isotherm, we derive a novel analytic isotherm for nonspecific binding of a ligand to a finite lattice. This isotherm is an excellent approximation to the exact factorial-based Epstein finite lattice isotherm even for short lattices and therefore is of great practical significance for analysis of experimental data and for analytic theory. Using this isotherm, we develop an analytic treatment of the competition between specific and nonspecific binding of a large ligand to the same finite lattice (i.e., DNA oligomer) containing one specific and multiple overlapping nonspecific binding sites. Analysis of calorimetric data for IHF-H' DNA binding using this treatment yields enthalpies and binding constants for both specific and nonspecific binding and the nonspecific site size. This novel analysis demonstrates the potential contribution of nonspecific binding to the observed thermodynamics of specific binding, even with very short DNA oligomers, and the need for reverse (constant protein) titrations or titrations with nonspecific DNA to resolve specific and nonspecific contributions. The competition treatment is useful in analyzing low-specificity systems, including those where specificity is weakened by mutations or the absence of specificity factors.


Assuntos
Ligação Competitiva/fisiologia , DNA/metabolismo , Modelos Moleculares , Proteínas/metabolismo , Sítios de Ligação/fisiologia , Cinética , Ligantes , Oligonucleotídeos/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa