Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(5): 2029-34, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449877

RESUMO

Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitrogênio/farmacologia , Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Peptídeos/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Proteínas Serina-Treonina Quinases , Receptores Proteína Tirosina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
Plant J ; 66(3): 456-66, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21255162

RESUMO

Rice plants grown in paddy fields preferentially use ammonium as a source of inorganic nitrogen. Glutamine synthetase (GS) catalyses the conversion of ammonium to glutamine. Of the three genes encoding cytosolic GS in rice, OsGS1;1 is critical for normal growth and grain filling. However, the basis of its physiological function that may alter the rate of nitrogen assimilation and carbon metabolism within the context of metabolic networks remains unclear. To address this issue, we carried out quantitative comparative analyses between the metabolite profiles of a rice mutant lacking OsGS1;1 and its background wild type (WT). The mutant plants exhibited severe retardation of shoot growth in the presence of ammonium compared with the WT. Overaccumulation of free ammonium in the leaf sheath and roots of the mutant indicated the importance of OsGS1;1 for ammonium assimilation in both organs. The metabolite profiles of the mutant line revealed: (i) an imbalance in levels of sugars, amino acids and metabolites in the tricarboxylic acid cycle, and (ii) overaccumulation of secondary metabolites, particularly in the roots under a continuous supply of ammonium. Metabolite-to-metabolite correlation analysis revealed the presence of mutant-specific networks between tryptamine and other primary metabolites in the roots. These results demonstrated a crucial function of OsGS1;1 in coordinating the global metabolic network in rice plants grown using ammonium as the nitrogen source.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Metabolômica , Nitrogênio/metabolismo , Oryza/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Carbono/metabolismo , Ciclo do Ácido Cítrico , Técnicas de Inativação de Genes , Glutamato Desidrogenase/metabolismo , Glutamina/metabolismo , Mutação , Nitratos/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Compostos de Amônio Quaternário/metabolismo , RNA Mensageiro/análise
3.
Plant J ; 57(2): 313-21, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18801012

RESUMO

Plants play an important role in the global sulphur cycle because they assimilate sulphur from the environment and build it into methionine and cysteine. Several genes of the sulphur assimilation pathway are regulated by microRNA-395 (miR395) that is itself induced by a low-sulphur (-S) environment. Here, we show that the six Arabidopsis miR395 loci are induced differently. We find that MIR395 loci are expressed in the vascular system of roots and leaves and root tips. Induction of miR395 by a -S environment in both roots and leaves suggests that translocation of miR395 from leaves to roots through the phloem is not necessary for plants growing on -S soil/medium. We also demonstrate that induction of miR395 is controlled by SLIM1, a key transcription factor in the sulphur assimilation pathway. Unexpectedly, the mRNA level of a miR395 target gene, SULTR2;1, strongly increases during miR395 induction in roots. We show that the spatial expression pattern of MIR395 transcripts in the vascular system does not appear to overlap with the expression pattern previously reported for SULTR2;1 mRNA. These results illustrate that negative temporal correlation between the expression level of a miRNA and its target gene in a complex tissue cannot be a requirement for target gene validation.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Enxofre/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Transportadores de Sulfato , Fatores de Transcrição/metabolismo
4.
Plant Cell Physiol ; 50(1): 13-25, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19073648

RESUMO

Pollen represents an important nitrogen sink in flowers to ensure pollen viability. Since pollen cells are symplasmically isolated during maturation and germination, membrane transporters are required for nitrogen import across the pollen plasma membrane. This study describes the characterization of the ammonium transporter AtAMT1;4, a so far uncharacterized member of the Arabidopsis AMT1 family, which is suggested to be involved in transporting ammonium into pollen. The AtAMT1;4 gene encodes a functional ammonium transporter when heterologously expressed in yeast or when overexpressed in Arabidopsis roots. Concentration-dependent analysis of (15)N-labeled ammonium influx into roots of AtAMT1;4-transformed plants allowed characterization of AtAMT1;4 as a high-affinity transporter with a K(m) of 17 microM. RNA and protein gel blot analysis showed expression of AtAMT1;4 in flowers, and promoter-gene fusions to the green fluorescent protein (GFP) further defined its exclusive expression in pollen grains and pollen tubes. The AtAMT1;4 protein appeared to be localized to the plasma membrane as indicated by protein gel blot analysis of plasma membrane-enriched membrane fractions and by visualization of GFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes. However, no phenotype related to pollen function could be observed in a transposon-tagged line, in which AtAMT1;4 expression is disrupted. These results suggest that AtAMT1;4 mediates ammonium uptake across the plasma membrane of pollen to contribute to nitrogen nutrition of pollen via ammonium uptake or retrieval.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Pólen/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutagênese Insercional , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pólen/metabolismo , Regiões Promotoras Genéticas , Compostos de Amônio Quaternário/metabolismo , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa