Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
PLoS Genet ; 18(9): e1010373, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36095024

RESUMO

Prostate cancer is the most inheritable cancer with approximately 42% of disease risk attributed to inherited factors by studies of twins, indicating the importance of additional genetic screening to identify predisposition variants. However, only DNA damage repair (DDR) genes have been investigated thoroughly in prostate cancer. To determine the comprehensive germline mutation landscape in Chinese prostate cancer patients, we performed whole exome sequencing in 100 Han Chinese patients with prostate cancer in Hong Kong and identified deleterious germline mutations. A total of 36 deleterious germline variants in 25 genes were identified in 29% patients. Variants were found in eight pathways, including DNA methylation, DDR, and tyrosine-protein kinase. These findings were validated in an independent Chinese cohort of 167 patients with prostate cancer in Shanghai. Seven common deleterious-variant-containing genes were found in discovery cohort (7/25, 28%) and validation cohort (7/28, 25%) with three genes not described before (LDLR, MYH7 and SUGCT) and four genes previously reported (FANCI, ITGA6, PABPC1 and RAD54B). When comparing with that of a cohort of East Asian healthy individuals, 12 non-DDR novel potential predisposition genes (ADGRG1, CHD4, DNMT3A, ERBB3, GRHL1, HMBS, LDLR, MYH7, MYO6, NT5C2, NUP98 and SUGCT) were identified using the discovery and validation cohorts, which have not been previously reported in prostate cancer patients in all ethnic groups. Taken together, this study reveals a comprehensive germline mutation landscape in Chinese prostate cancer patients and discovers 12 novel non-DDR predisposition genes to lay the groundwork for the optimization of genetic screening.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , China , Predisposição Genética para Doença , Humanos , Masculino , Neoplasias da Próstata/genética , Proteínas Quinases/genética , Tirosina/genética , Sequenciamento do Exoma
2.
BMC Genomics ; 25(1): 478, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745294

RESUMO

BACKGROUND: Tuberculosis (TB) represents a major global health challenge. Drug resistance in Mycobacterium tuberculosis (MTB) poses a substantial obstacle to effective TB treatment. Identifying genomic mutations in MTB isolates holds promise for unraveling the underlying mechanisms of drug resistance in this bacterium. METHODS: In this study, we investigated the roles of single nucleotide variants (SNVs) in MTB isolates resistant to four antibiotics (moxifloxacin, ofloxacin, amikacin, and capreomycin) through whole-genome analysis. We identified the drug-resistance-associated SNVs by comparing the genomes of MTB isolates with reference genomes using the MuMmer4 tool. RESULTS: We observed a strikingly high proportion (94.2%) of MTB isolates resistant to ofloxacin, underscoring the current prevalence of drug resistance in MTB. An average of 3529 SNVs were detected in a single ofloxacin-resistant isolate, indicating a mutation rate of approximately 0.08% under the selective pressure of ofloxacin exposure. We identified a set of 60 SNVs associated with extensively drug-resistant tuberculosis (XDR-TB), among which 42 SNVs were non-synonymous mutations located in the coding regions of nine key genes (ctpI, desA3, mce1R, moeB1, ndhA, PE_PGRS4, PPE18, rpsA, secF). Protein structure modeling revealed that SNVs of three genes (PE_PGRS4, desA3, secF) are close to the critical catalytic active sites in the three-dimensional structure of the coding proteins. CONCLUSION: This comprehensive study elucidates novel resistance mechanisms in MTB against antibiotics, paving the way for future design and development of anti-tuberculosis drugs.


Assuntos
Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Genoma Bacteriano , Humanos , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Mutação , Antituberculosos/farmacologia , Proteínas de Bactérias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38710642

RESUMO

BACKGROUND: Asian carps, a popular freshwater fish globally, are valued for their flavor and serve as a crucial protein source, especially for infants. However, grass carp parvalbumin is highly allergenic, surpassing the allergenicity of fish like salmon and cod. The allergenic potential of parvalbumin in other Asian carps remains unknown, underscoring the need for allergen identification to improve the precision of fish allergy diagnosis and treatment. OBJECTIVE: To identify all parvalbumin homologs in Asian carps and investigate the role of gene divergence in allergenic homolog formation. METHODS: Three annotated genomes of Asian carp, including grass carp, black carp and bighead carp, were constructed using a hybrid assembly approach. Through sequence homology at the genomic level, all the homologs of major fish allergens were identified. Bioinformatics tools were then employed to reveal the gene structures, expression levels, and protein conformations of parvalbumin. RESULTS: Grass carp genome analysis showed nine parvalbumin homologs, with Cid_PV2 most similar to Cten i 1. Bighead and black carp genomes had ten homologs, including potentially allergenic Mpi_PV7 and Hno_PV7. Tissue-specific expression patterns revealed alternative usage of parvalbumin homologs. Gene duplication events expanded parvalbumin copies in bony fish, with two gene clusters identified in Asian carp genomes. CONCLUSION: All the homologs of Asian carps' parvalbumin were accurately identified and gene divergence contributed to the formation of allergenic homologs. Together with a comprehensive gene sequence profile of carps' parvalbumin, those could be applied to achieve a more precise clinical diagnostic test.

4.
Mol Biol Evol ; 39(5)2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35535514

RESUMO

Highly diversified astigmatic mites comprise many medically important human household pests such as house dust mites causing ∼1-2% of all allergic diseases globally; however, their evolutionary origin and diverse lifestyles including reversible parasitism have not been illustrated at the genomic level, which hampers allergy prevention and our exploration of these household pests. Using six high-quality assembled and annotated genomes, this study not only refuted the monophyly of mites and ticks, but also thoroughly explored the divergence of Acariformes and the diversification of astigmatic mites. In monophyletic Acariformes, Prostigmata known as notorious plant pests first evolved, and then rapidly evolving Astigmata diverged from soil oribatid mites. Within astigmatic mites, a wide range of gene families rapidly expanded via tandem gene duplications, including ionotropic glutamate receptors, triacylglycerol lipases, serine proteases and UDP glucuronosyltransferases. Gene diversification after tandem duplications provides many genetic resources for adaptation to sensing environmental signals, digestion, and detoxification in rapidly changing household environments. Many gene decay events only occurred in the skin-burrowing parasitic mite Sarcoptes scabiei. Throughout the evolution of Acariformes, massive horizontal gene transfer events occurred in gene families such as UDP glucuronosyltransferases and several important fungal cell wall lytic enzymes, which enable detoxification and digestive functions and provide perfect drug targets for pest control. This comparative study sheds light on the divergent evolution and quick adaptation to human household environments of astigmatic mites and provides insights into the genetic adaptations and even control of human household pests.


Assuntos
Adaptação Fisiológica , Genômica , Adaptação Fisiológica/genética , Genoma , Humanos , Difosfato de Uridina
5.
Bioinformatics ; 38(14): 3513-3522, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35674358

RESUMO

MOTIVATION: Hepatocellular carcinoma (HCC) is a primary malignancy with a poor prognosis. Recently, multi-omics molecular-level measurement enables HCC diagnosis and prognosis prediction, which is crucial for early intervention of personalized therapy to diminish mortality. Here, we introduce a novel strategy utilizing DNA methylation and RNA expression data to achieve a multi-omics gene pair signature (GPS) for HCC discrimination. RESULTS: The immune genes with negative correlations between expression and promoter methylation are enriched in the highly connected cancer-related pathway network, which are considered as the candidates for HCC detection. After that, we separately construct a methylation GPS (mGPS) and an expression GPS (eGPS), and then assemble them as a meGPS with five gene pairs, in which the significant methylation and expression changes occur between HCC tumor and non-tumor groups. Reliable performance has been validated by independent tissue (age, gender and etiology) and blood datasets. This study proposes a procedure for multi-omics GPS identification and develops a novel HCC signature using both methylome and transcriptome data, suggesting potential molecular targets for the detection and therapy of HCC. AVAILABILITY AND IMPLEMENTATION: Models are available at https://github.com/bioinformaticStudy/meGPS.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Transcriptoma , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Epigenoma , Metilação de DNA , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica
6.
Allergy ; 78(4): 1088-1103, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36153808

RESUMO

BACKGROUND: One of the most common cockroach types in urban areas, the American cockroach (Periplaneta americana), has been reported to impose an increased risk of allergies and asthma. Limited groups of allergens (Per a 1-13) have been identified in this species due to the lack of genome-related information. METHODS: To expand the allergen profile of P. americana, genomic, transcriptomic, and proteomic approaches were applied. With the support of a high-quality genome assembled using nanopore, Illumina, and Hi-C sequencing techniques, potential allergens were identified based on protein homology. Then, using enzyme-linked immunosorbent assay, selected allergens were tested in Thai patients allergic to P. americana. RESULTS: A chromosomal-level genome of P. americana (3.06 Gb) has been assembled with 94.6% BUSCO completeness, and its contiguity has been significantly improved (N50 = 151 Mb). A comprehensive allergen profile has been characterized, with seven novel groups of allergens, including enolase (Per a 14), cytochrome C (Per a 15), cofilin (Per a 16), alpha-tubulin (Per a 17), cyclophilin (Per a 18), porin3 (Per a 19), and peroxiredoxin-6 (Per a 20), showing IgE sensitivity in enzyme-linked immunosorbent assay. A new isoallergen of tropomyosin (Per a 7.02) and multiple potential isoallergens of Per a 5 were revealed using bioinformatics and proteomic approaches. Additionally, comparative analysis of P. americana with the closely related Blattodea species revealed the possibility of cross-reaction. CONCLUSION: The high-quality genome and proteome of P. americana are beneficial in studying cockroach allergens at the molecular level. Seven novel allergen groups and one isoallergen in Per a 7 were identified.


Assuntos
Baratas , Hipersensibilidade , Periplaneta , Animais , Humanos , Proteômica , Alérgenos/genética , Hipersensibilidade/genética
7.
Gerontology ; 69(12): 1414-1423, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37857262

RESUMO

INTRODUCTION: Telomere length (TL) is generally regarded as a biomarker of aging. TL, which is influenced by sociodemographic factors, has been shown to be inversely associated with morbidity. However, most studies examined the youngest, and whether the findings can be extended to older individuals is less clear. Further, few studies have examined these questions in Chinese older adults. This cross-sectional study examined TL and its associated factors in Chinese aged 75+ years in Hong Kong. METHODS: Participants were from the Mr. and Ms. Osteoporosis cohort. A structured interview on sociodemographic factors and physical measurement was conducted. Frailty and sarcopenia status were respectively determined by Fried's criteria and the Asian Working Group for Sarcopenia definition. TL was measured by a molecular inversion probe-quantitative PCR assay and expressed as a novel telomere/a single copy reference gene (T/S) ratio. Adjusted binary logistic regressions were used to examine the associations between TL and the presence of multimorbidity, age-related diseases, frailty, and sarcopenia. RESULTS: Among 555 participants (mean age 83.6 ± 3.8 years, 41.3% females), the mean T/S ratio was 1.01 ± 0.20. Males had a lower T/S ratio (0.97 ± 0.20) compared with females (1.07 ± 0.18) (p < 0.001). A lower education level was related to a longer TL (p = 0.016). Being a current smoker was related to a shorter TL (p = 0.007). TL was not significantly different across categories of age, subjective socioeconomic status, drinking status, physical activity level, and body mass index (p > 0.05). There were no associations between TL and the presence of multimorbidity, diabetes, stroke, cardiovascular diseases, cognitive impairment, frailty, and sarcopenia. CONCLUSION: Among Chinese aged 75+ years, males had shorter TL compared with females. TL was not associated with age-related diseases, frailty, and sarcopenia in this age group. TL may not be a biological marker of aging among older individuals.


Assuntos
Fragilidade , Sarcopenia , Masculino , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Sarcopenia/epidemiologia , Sarcopenia/genética , Fragilidade/epidemiologia , Fragilidade/genética , Estudos Transversais , População do Leste Asiático , Biomarcadores , Telômero/genética , Encurtamento do Telômero
8.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629036

RESUMO

Imbalance of the immune system caused by alterations of the gut microbiome is considered to be a critical factor in the pathogenesis of infant eczema, but the exact role of the gut microbiome in adult atopic dermatitis (AD) patients remains to be clarified. To investigate the differences of the gut microbiome between adult AD patients and healthy individuals, stool samples of 234 adults, containing 104 AD patients and 130 healthy subjects, were collected for 16S rRNA gene amplicon. Altered structure and metabolic dysfunctions of the gut microbiome were identified in adult AD patients. Our results illustrated that the adult AD patients were more likely to have allergies, particularly non-food allergies. In addition, the gut microbiome composition of the AD and normal groups were considerably different. Moreover, Romboutsia and Clostridi-um_sensu_stricto_1 was enriched in the normal group, whereas Blautia, Butyricicoccus, Lachnoclostridium, Eubacterium_hallii_group, Erysi-pelatoclostridium, Megasphaera, Oscillibacter, and Flavonifractor dominated in the AD group. Additionally, purine nucleotide degradation pathways were significantly enriched in the AD group, and the enrichment of proteinogenic amino acid biosynthesis pathways was found in the normal group. This study provides insights into new therapeutic strategies targeting the gut microbiome for AD and evidence for the involvement of the gut-skin axis in AD patients.


Assuntos
Dermatite Atópica , Microbioma Gastrointestinal , Hipersensibilidade , Lactobacillales , Lactente , Humanos , Adulto , Microbioma Gastrointestinal/genética , População do Leste Asiático , RNA Ribossômico 16S/genética , Clostridiaceae
9.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047542

RESUMO

Psoriasis is a common chronic immune-mediated inflammatory skin disease with the association of various comorbidities. Despite the introduction of highly effective biologic therapies over the past few decades, the exact trigger for an immune reaction in psoriasis is unclear. With the majority of immune cells residing in the gut, the effect of gut microbiome dysbiosis goes beyond the gastrointestinal site and may exacerbate inflammation and regulate the immune system elsewhere, including but not limited to the skin via the gut-skin axis. In order to delineate the role of the gut microbiome in Southern Chinese psoriasis patients, we performed targeted 16S rRNA sequencing and comprehensive bioinformatic analysis to compare the gut microbiome profile of 58 psoriasis patients against 49 healthy local subjects presumably with similar lifestyles. Blautia wexlerae and Parabacteroides distasonis were found to be enriched in psoriasis patients and in some of the healthy subjects, respectively. Metabolic functional pathways were predicted to be differentially abundant, with a clear shift toward SCFA synthesis in healthy subjects. The alteration of the co-occurrence network was also evident in the psoriasis group. In addition, we also profiled the gut microbiome in 52 of the 58 recruited psoriasis patients after taking 8 weeks of an orally administrated novel E3 probiotics formula (with prebiotics, probiotics and postbiotics). The Dermatological Life Quality Index (p = 0.009) and Psoriasis Area and Severity Index (p < 0.001) were significantly improved after taking 8 weeks of probiotics with no adverse effect observed. We showed that probiotics could at least partly restore gut dysbiosis via the modulation of the gut microbiome. Here, we also report the potential application of a machine learning-derived gut dysbiosis index based on a quantitative PCR panel (AUC = 0.88) to monitor gut dysbiosis in psoriasis patients. To sum up, our study suggests the gut microbial landscape differed in psoriasis patients at the genera, species, functional and network levels. Additionally, the dysbiosis index could be a cost-effective and rapid tool to monitor probiotics use in psoriasis patients.


Assuntos
Disbiose , Microbioma Gastrointestinal , Probióticos , Psoríase , Adulto , Humanos , Disbiose/complicações , Disbiose/tratamento farmacológico , População do Leste Asiático , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Probióticos/farmacologia , Probióticos/uso terapêutico , Psoríase/complicações , Psoríase/tratamento farmacológico , RNA Ribossômico 16S/genética
10.
Hepatology ; 74(1): 264-280, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33462832

RESUMO

BACKGROUND AND AIMS: Mutational signature analyses are an effective tool in identifying cancer etiology. Humans are frequently exposed to pyrrolizidine alkaloids (PAs), the most common carcinogenic phytotoxins widely distributed in herbal remedies and foods. However, due to the lack of human epidemiological data, PAs are classified as group II hepatocarcinogens by the World Health Organization. This study identified a PA mutational signature as the biomarker to investigate the association of PA exposure with human liver cancer. APPROACH AND RESULTS: Pyrrole-protein adducts (PPAs), the PA exposure biomarker, were measured and found in 32% of surgically resected specimens from 34 patients with liver cancer in Hong Kong. Next, we delineated the mode of mutagenic and tumorigenic actions of retrorsine, a representative PA, in mice and human hepatocytes (HepaRG). Retrorsine induced DNA adduction, DNA damage, and activation of tumorigenic hepatic progenitor cells, which initiated hepatocarcinogenesis. PA mutational signature, as the unique molecular fingerprint of PA-induced mutation, was derived from exome mutations in retrorsine-exposed mice and HepaRG cells. Notably, PA mutational signature was validated in genomes of patients with PPA-positive liver cancer but not patients with PPA-negative liver cancer, confirming the specificity of this biomarker in revealing PA-associated liver cancers. Furthermore, we examined the established PA mutational signature in 1,513 liver cancer genomes and found that PA-associated liver cancers were potentially prevalent in Asia (Mainland China [48%], Hong Kong [44%], Japan [22%], South Korea [6%], Southeast Asia [25%]) but minor in Western countries (North America [3%] and Europe [5%]). CONCLUSIONS: This study provides a clinical indication of PA-associated liver cancer. We discovered an unexpectedly extensive implication of PA exposure in patients with liver cancer, laying the scientific basis for precautionary approaches and prevention of PA-associated human liver cancers.


Assuntos
Carcinogênese/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Alcaloides de Pirrolizidina/efeitos adversos , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Sequenciamento do Exoma
11.
Eur Respir J ; 57(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817257

RESUMO

BACKGROUND AND AIMS: Neutrophilic inflammation is a hallmark of some specific asthma phenotypes; its aetiology is not yet fully understood. House dust mite (HDM) is the most common factor in the pathogenesis of airway inflammation. This study aims to elucidate the role of cross-antibodies against HDM-derived factors in the development of neutrophilic inflammation in the airway. METHODS: Blood samples were collected from asthma patients with chronic neutrophilic asthma for analysis of HDM-specific cross-reactive antibodies. The role of an antibody against HDM-derived enolase (EnoAb) in the impairment of airway epithelial barrier function and induction of airway inflammation was assessed in a cell culture model and an animal model. RESULTS: High similarity (72%) of the enolase gene sequences was identified between HDM and human. Serum EnoAb was detected in patients with chronic neutrophilic asthma. The EnoAb bound to airway epithelial cells to form complexes with enolase, which activated complement, impaired airway epithelial barrier functions and induced neutrophilic inflammation in the airway tissues. CONCLUSIONS: HDM-derived enolase can induce specific cross-antibodies in humans, which induce neutrophilic inflammation in the airway.


Assuntos
Asma , Fosfopiruvato Hidratase , Animais , Anticorpos , Reações Cruzadas , Modelos Animais de Doenças , Poeira , Humanos , Inflamação , Neutrófilos , Pyroglyphidae
12.
Exp Dermatol ; 30(6): 859-864, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33433023

RESUMO

Childhood eczema is common but its prevalence is variable in different regions of the world. In this study, we explore the associations of various risk factors such as the microbiome, environment, lifestyle, diet and maternal stress with the development of eczema among infants in Hong Kong. Upon enrolment in the study, the infants' parents provided demographic data by self-reporting. At enrolment and 1 year after birth, the infants' allergic conditions, lifestyles and dietary factors and the degree of maternal stress were assessed using various questionnaires. The infants' gut microbiomes were analysed by 16S RNA sequencing, and the longitudinal changes in various bacterial strains were compared between control and eczema-affected groups. Multivariate analyses (after adjustment for other significant factors) revealed that the changes in the abundance of Hungatella hathewayi in the gut were significantly associated with the development of eczema (p = 0.005). In conclusion, the increased abundance of Hungatella hathewayi was associated with an increased risk of developing eczema by 1 year of age. This study thus explored the potential risk factors for the development of eczema in Hong Kong infants, and sheds light on the possible association between early-life gut microbiome and other environmental factors.


Assuntos
Eczema/etiologia , Eczema/microbiologia , Microbioma Gastrointestinal , Estilo de Vida , Estudos de Coortes , Feminino , Hong Kong , Humanos , Lactente , Recém-Nascido , Masculino
13.
Int J Mol Sci ; 21(7)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276333

RESUMO

The pandemic novel coronavirus infection, Coronavirus Disease 2019 (COVID-19), has affected at least 190 countries or territories, with 465,915 confirmed cases and 21,031 deaths. In a containment-based strategy, rapid, sensitive and specific testing is important in epidemiological control and clinical management. Using 96 SARS-CoV-2 and 104 non-SARS-CoV-2 coronavirus genomes and our in-house program, GolayMetaMiner, four specific regions longer than 50 nucleotides in the SARS-CoV-2 genome were identified. Primers were designed to target the longest and previously untargeted nsp2 region and optimized as a probe-free real-time reverse transcription-polymerase chain reaction (RT-PCR) assay. The new COVID-19-nsp2 assay had a limit of detection (LOD) of 1.8 TCID50/mL and did not amplify other human-pathogenic coronaviruses and respiratory viruses. Assay reproducibility in terms of cycle threshold (Cp) values was satisfactory, with the total imprecision (% CV) values well below 5%. Evaluation of the new assay using 59 clinical specimens from 14 confirmed cases showed 100% concordance with our previously developed COVID-19-RdRp/Hel reference assay. A rapid, sensitive, SARS-CoV-2-specific real-time RT-PCR assay, COVID-19-nsp2, was developed.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Genoma Viral , Pneumonia Viral/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , Humanos , Pandemias , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Sensibilidade e Especificidade
14.
BMC Genomics ; 20(1): 394, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113361

RESUMO

BACKGROUND: Mycobacterium tuberculosis (MTB) is a common bacterium causing tuberculosis and remains a major pathogen for mortality. Although the MTB genome has been extensively explored for two decades, the functions of 27% (1051/3906) of encoded proteins have yet to be determined and these proteins are annotated as hypothetical proteins. METHODS: We assigned functions to these hypothetical proteins using SSEalign, a newly designed algorithm utilizing structural information. A set of rigorous criteria was applied to these annotations in order to examine whether they were supported by each parameter. Virulence factors and potential drug targets were also screened among the annotated proteins. RESULTS: For 78% (823/1051) of the hypothetical proteins, we could identify homologs in Escherichia coli and Salmonella typhimurium by using SSEalign. Functional classification analysis indicated that 62.2% (512/823) of these annotated proteins were enzymes with catalytic activities and most of these annotations were supported by at least two other independent parameters. A relatively high proportion of transporter was identified in MTB genome, indicating the potential frequent transportation of frequent absorbing essential metabolites and excreting toxic materials in MTB. Twelve virulence factors and ten vaccine candidates were identified within these MTB hypothetical proteins, including two genes (rpoS and pspA) related to stress response to the host immune system. Furthermore, we have identified six novel drug target candidates among our annotated proteins, including Rv0817 and Rv2927c, which could be used for treating MTB infection. CONCLUSIONS: Our annotation of the MTB hypothetical proteins will probably serve as a useful dataset for future MTB studies.


Assuntos
Proteínas de Bactérias/fisiologia , Mycobacterium tuberculosis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Genoma Bacteriano , Anotação de Sequência Molecular , Mycobacterium tuberculosis/imunologia , Homologia de Sequência de Aminoácidos , Fatores de Virulência
15.
Kidney Int ; 95(1): 178-187, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30415941

RESUMO

Diabetes is a major cause of end stage renal disease (ESRD), yet the natural history of diabetic kidney disease is not well understood. We aimed to identify patterns of estimated GFR (eGFR) trajectory and to determine the clinical and genetic factors and their associations of these different patterns with all-cause mortality in patients with type 2 diabetes. Among 6330 patients with baseline eGFR >60 ml/min per 1.73 m2 in the Hong Kong Diabetes Register, a total of 456 patients (7.2%) developed Stage 5 chronic kidney disease or ESRD over a median follow-up of 13 years (incidence rate 5.6 per 1000 person-years). Joint latent class modeling was used to identify different patterns of eGFR trajectory. Four distinct and non-linear trajectories of eGFR were identified: slow decline (84.3% of patients), curvilinear decline (6.5%), progressive decline (6.1%) and accelerated decline (3.1%). Microalbuminuria and retinopathy were associated with accelerated eGFR decline, which was itself associated with all-cause mortality (odds ratio [OR] 6.9; 95% confidence interval [CI]: 5.6-8.4 for comparison with slow eGFR decline). Of 68 candidate genetic loci evaluated, the inclusion of five loci (rs11803049, rs911119, rs1933182, rs11123170, and rs889472) improved the prediction of eGFR trajectories (net reclassification improvement 0.232; 95% CI: 0.057--0.406). Our study highlights substantial heterogeneity in the patterns of eGFR decline among patients with diabetic kidney disease, and identifies associated clinical and genetic factors that may help to identify those who are more likely to experience an accelerated decline in kidney function.


Assuntos
Albuminúria/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/epidemiologia , Retinopatia Diabética/epidemiologia , Falência Renal Crônica/epidemiologia , Idoso , Albuminúria/patologia , Albuminúria/fisiopatologia , Povo Asiático , Causas de Morte , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/mortalidade , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Retinopatia Diabética/genética , Progressão da Doença , Feminino , Seguimentos , Loci Gênicos/genética , Taxa de Filtração Glomerular , Hong Kong/epidemiologia , Humanos , Incidência , Rim/fisiopatologia , Falência Renal Crônica/genética , Falência Renal Crônica/patologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema de Registros/estatística & dados numéricos
17.
Allergy ; 74(4): 780-787, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30394551

RESUMO

BACKGROUND: The preventive effect of allergen immunotherapy (AIT) on allergy and asthma development is currently assessed using primary and secondary AIT approaches. Knowledge of the immunological effects of these interventions is limited and the impact on epitope diversity remains to be defined. METHODS: We used high-density peptide arrays that included all known Dermatophagoides pteronyssinus (Der p) and Dermatophagoides farinae (Der f) allergens and the whole proteome of Der f to study changes in House Dust Mite (HDM) linear peptide recognition during a 2-year preventive double-blind placebo-controlled sublingual HDM AIT pilot study in 2-5-year-old children with sensitization to HDM but without symptoms. RESULTS: Preventive AIT-treated patients showed significantly higher IgG epitope diversity to HDM allergens compared to placebo-treated individuals at 24 months of treatment (P < 0.05), while no increase in IgE diversity was seen. At 24 months of treatment, IgG4 diversity for HDM allergens was significantly higher in the pAIT-treated patients compared to placebo group (P < 0.05). Potentially beneficial changes in epitope recognition throughout the treatment are also seen in peptides derived from Der f proteome. CONCLUSION: These data suggest a beneficial immunomodulation of preventive sublingual immunotherapy at a molecular level by favoring a broader blocking repertoire and inhibiting epitope spreading.


Assuntos
Epitopos/efeitos dos fármacos , Pyroglyphidae/imunologia , Imunoterapia Sublingual/métodos , Animais , Antígenos de Dermatophagoides/imunologia , Pré-Escolar , Dermatophagoides pteronyssinus/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos Piloto
18.
Pediatr Allergy Immunol ; 30(6): 624-631, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132163

RESUMO

BACKGROUND: Allergic rhinoconjunctivitis (ARC) is a prevalent allergic condition in the pediatric population. Microbial dysbiosis has increasingly been recognized to influence on host immunity and allergic diseases. However, the microbial profile of ARC has not been characterized. This cross-sectional study aims to evaluate the changes in nasal and ocular surface microbiome of children with ARC. METHODS: Ocular and nasopharyngeal swabs were collected from controls and pediatric ARC cases for 16S rRNA amplicon sequencing. The bacterial community profile was analyzed. The correlation of the microbial diversity with the ARC-related clinical scores was studied. RESULTS: A total of 23 patients with ARC and 17 healthy controls were recruited;30 were ocular samples (15 controls vs 15 ARC), while 40 were nasal samples (17controls vs 23 ARC) The alpha diversity of nasopharyngeal microbiome was significantly higher in ARC patients than healthy controls (P < 0.01), but not for ocular microbiome. The clinical scores in all subjects were negatively correlated with the Shannon diversity for ocular (P = 0.014) and positively correlated with nasopharyngeal (P = 0.010) microbiome. While the ocular microbiome remained significantly distinct from nasopharyngeal microbiome in terms of both alpha and beta diversity in both healthy subjects and ARC patients, significant differences of relative abundance of certain phyla (Bacteroidetes, Cyanobacteria, and Deinococcus-Thermus) and genera (Dolosigranulum and Moraxella) between nasal and ocular surfaces were only detected in healthy controls, but not in the ARC subjects, suggesting the microbial composition at both body sites becoming more similar at disease state. CONCLUSION: This study reported (a) a higher alpha diversity in ocular than nasopharyngeal microbiome in both ARC patients and controls, and (b) nasopharyngeal microbiome became more diverse in ARC patients than in controls. Our results suggested an interaction of the microbiome between ocular and nasal compartments in patients with ARC.


Assuntos
Conjuntivite Alérgica/microbiologia , Disbiose/imunologia , Olho/microbiologia , Microbiota/genética , Nasofaringe/microbiologia , RNA Ribossômico 16S/genética , Rinite Alérgica/microbiologia , Adolescente , Criança , Estudos Transversais , Olho/imunologia , Fezes/microbiologia , Feminino , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Nasofaringe/imunologia
19.
Appl Microbiol Biotechnol ; 103(12): 4649-4677, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062053

RESUMO

Long noncoding RNA (lncRNA) is a kind of RNAi molecule composed of hundreds to thousands of nucleotides. There are several major types of functional lncRNAs which participate in some important cellular pathways. LncRNA-RNA interaction controls mRNA translation and degradation or serves as a microRNA (miRNA) sponge for silencing. LncRNA-protein interaction regulates protein activity in transcriptional activation and silencing. LncRNA guide, decoy, and scaffold regulate transcription regulators of enhancer or repressor region of the coding genes for alteration of expression. LncRNA plays a role in cellular responses including the following activities: regulation of chromatin structural modification and gene expression for epigenetic and cell function control, promotion of hematopoiesis and maturation of immunity, cell programming in stem cell and somatic cell development, modulation of pathogen infection, switching glycolysis and lipid metabolism, and initiation of autoimmune diseases. LncRNA, together with miRNA, are considered the critical elements in cancer development. It has been demonstrated that tumorigenesis could be driven by homeostatic imbalance of lncRNA/miRNA/cancer regulatory factors resulting in biochemical and physiological alterations inside the cells. Cancer-driven lncRNAs with other cellular RNAs, epigenetic modulators, or protein effectors may change gene expression level and affect the viability, immortality, and motility of the cells that facilitate cancer cell cycle rearrangement, angiogenesis, proliferation, and metastasis. Molecular medicine will be the future trend for development. LncRNA/miRNA could be one of the potential candidates in this category. Continuous studies in lncRNA functional discrepancy between cancer cells and normal cells and regional and rational genetic differences of lncRNA profiles are critical for clinical research which is beneficial for clinical practice.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Animais , Neoplasias Colorretais/terapia , Biologia Computacional , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/terapia , Camundongos , Terapia de Alvo Molecular , Neoplasias Gástricas/terapia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa