Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
J Biol Chem ; 300(2): 105636, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199572

RESUMO

The sequence-specific endoribonuclease MazF is widely conserved among prokaryotes. Approximately 20 different MazF cleavage sequences have been discovered, varying from three to seven nucleotides in length. Although MazFs from various prokaryotes were found, the cleavage sequences of most MazFs are unknown. Here, we characterized the conserved MazF of Salmonella enterica subsp. arizonae (MazF-SEA). Using massive parallel sequencing and fluorometric assays, we revealed that MazF-SEA preferentially cleaves the sequences U∧ACG and U∧ACU (∧ represents cleavage sites). In addition, we predicted the 3D structure of MazF-SEA using AlphaFold2 and aligned it with the crystal structure of RNA-bound Bacillus subtilis MazF to evaluate RNA interactions. We found Arg-73 of MazF-SEA interacts with RNAs containing G and U at the third position from the cleavage sites (U∧ACG and U∧ACU). We then obtained the mutated MazF-SEA R73L protein to evaluate the significance of Arg-73 interaction with RNAs containing G and U at this position. We also used fluorometric and kinetic assays and showed the enzymatic activity of MazF-SEA R73L for the sequence UACG and UACU was significantly decreased. These results suggest Arg-73 is essential for recognizing G and U at the third position from the cleavage sites. This is the first study to our knowledge to identify a single residue responsible for RNA recognition by MazF. Owing to its high specificity and ribosome-independence, MazF is useful for RNA cleavage in vitro. These results will likely contribute to increasing the diversity of MazF specificity and to furthering the application of MazF in RNA engineering.


Assuntos
Salmonella enterica , Endonucleases , Endorribonucleases/metabolismo , Guanina , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Salmonella enterica/enzimologia , Salmonella enterica/genética , Uracila
2.
Microbiol Immunol ; 66(5): 225-233, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35174526

RESUMO

Persisters are a subpopulation that exhibit growth suppression, antibiotic tolerance, and regrowth after antibiotic removal, without any genetic mutations, which causes the recalcitrance and recurrence of infectious diseases. Persisters are majorly induced through the repression of energy metabolism, but some exceptions have been reported. We have previously shown that ldhA, which encodes lactate dehydrogenase, induces Escherichia coli persisters, resulting in a state of high-energy metabolism. However, the detailed mechanism of persister formation upon ldhA expression remains elusive. In the present study, we focused on the SOS response pathway via the DNA repair pathway that consumes adenosine triphosphate and revealed that the SOS response pathway is activated upon ldhA expression even before antimicrobial treatment. Metabolome analysis of ldhA-overexpressing cells revealed that nucleotide metabolic pathways, such as de novo purine biosynthesis, were activated to prepare a nucleotide pool, as substrate for repairing ofloxacin-induced DNA damage. We provide a novel persister model that contributes to survival as a species by "accidentally" activating the SOS response even before receiving antimicrobial stress.


Assuntos
Anti-Infecciosos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Lactato Desidrogenase 5 , Nucleotídeos/metabolismo , Resposta SOS em Genética
3.
J Biol Chem ; 295(23): 7923-7940, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341124

RESUMO

RNA localization in subcellular compartments is essential for spatial and temporal regulation of protein expression in neurons. Several techniques have been developed to visualize mRNAs inside cells, but the study of the behavior of endogenous and nonengineered mRNAs in living neurons has just started. In this study, we combined reduction-triggered fluorescent (RETF) probes and fluorescence correlation spectroscopy (FCS) to investigate the diffusion properties of activity-regulated cytoskeleton-associated protein (Arc) and inositol 1,4,5-trisphosphate receptor type 1 (Ip3r1) mRNAs. This approach enabled us to discriminate between RNA-bound and unbound fluorescent probes and to quantify mRNA diffusion parameters and concentrations in living rat primary hippocampal neurons. Specifically, we detected the induction of Arc mRNA production after neuronal activation in real time. Results from computer simulations with mRNA diffusion coefficients obtained in these analyses supported the idea that free diffusion is incapable of transporting mRNA of sizes close to those of Arc or Ip3r1 to distal dendrites. In conclusion, the combined RETF-FCS approach reported here enables analyses of the dynamics of endogenous, unmodified mRNAs in living neurons, affording a glimpse into the intracellular dynamics of RNA in live cells.


Assuntos
Corantes Fluorescentes/química , Neurônios/química , RNA Mensageiro/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Corantes Fluorescentes/síntese química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Imagem Óptica , RNA Mensageiro/genética , Ratos , Ratos Wistar , Espectrometria de Fluorescência
4.
Cancer Sci ; 112(2): 884-892, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33280191

RESUMO

Discrimination of Philadelphia-negative myeloproliferative neoplasms (Ph-MPNs) from reactive hypercytosis and myelofibrosis requires a constellation of testing including driver mutation analysis and bone marrow biopsies. We searched for a biomarker that can more easily distinguish Ph-MPNs from reactive hypercytosis and myelofibrosis by using RNA-seq analysis utilizing platelet-rich plasma (PRP)-derived RNAs from patients with essential thrombocythemia (ET) and reactive thrombocytosis, and CREB3L1 was found to have an extremely high impact in discriminating the two disorders. To validate and further explore the result, expression levels of CREB3L1 in PRP were quantified by reverse-transcription quantitative PCR and compared among patients with ET, other Ph-MPNs, chronic myeloid leukemia (CML), and reactive hypercytosis and myelofibrosis. A CREB3L1 expression cutoff value determined based on PRP of 18 healthy volunteers accurately discriminated 150 driver mutation-positive Ph-MPNs from other entities (71 reactive hypercytosis and myelofibrosis, 6 CML, and 18 healthy volunteers) and showed both sensitivity and specificity of 1.0000. Importantly, CREB3L1 expression levels were significantly higher in ET compared with reactive thrombocytosis (P < .0001), and polycythemia vera compared with reactive erythrocytosis (P < .0001). Pathology-affirmed triple-negative ET (TN-ET) patients were divided into a high- and low-CREB3L1-expression group, and some patients in the low-expression group achieved a spontaneous remission during the clinical course. In conclusion, CREB3L1 analysis has the potential to single-handedly discriminate driver mutation-positive Ph-MPNs from reactive hypercytosis and myelofibrosis, and also may identify a subgroup within TN-ET showing distinct clinical features including spontaneous remission.


Assuntos
Biomarcadores Tumorais/sangue , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/sangue , Transtornos Mieloproliferativos/diagnóstico , Proteínas do Tecido Nervoso/sangue , Diagnóstico Diferencial , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Transtornos Mieloproliferativos/sangue
5.
RNA Biol ; 18(12): 2401-2416, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33866926

RESUMO

Pseudomonas aeruginosa harbours two redundant RNA-binding proteins RsmA/RsmN (RsmA/N), which play a critical role in balancing acute and chronic infections. However, in vivo binding sites on target transcripts and the overall impact on the physiology remains unclear. In this study, we applied in vivo UV crosslinking immunoprecipitation followed by RNA-sequencing (UV CLIP-seq) to detect RsmA/N-binding sites at single-nucleotide resolution and mapped more than 500 binding sites to approximately 400 genes directly bound by RsmA/N in P. aeruginosa. This also verified the ANGGA sequence in apical loops skewed towards 5'UTRs as a consensus motif for RsmA/N binding. Genetic analysis combined with CLIP-seq results suggested previously unrecognized RsmA/N targets involved in LPS modification. Moreover, the RsmA/N-titrating RNAs RsmY/RsmZ may be positively regulated by the RsmA/N-mediated translational repression of their upstream regulators, thus providing a possible mechanistic explanation for homoeostasis of the Rsm system. Thus, our study provides a detailed view of RsmA/N-RNA interactions and a resource for further investigation of the pleiotropic effects of RsmA/N on gene expression in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação/métodos , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Raios Ultravioleta , Proteínas de Bactérias/genética , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Ligação Proteica , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , Proteínas de Ligação a RNA/genética
6.
Environ Microbiol ; 22(6): 2365-2382, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32285573

RESUMO

Oxidation of nitrite to nitrate is an important process in the global nitrogen cycle. Recent molecular biology-based studies have revealed that the widespread nitrite-oxidizing bacteria (NOB) belonging to the genus 'Candidatus Nitrotoga' may be highly important for the environment. However, the insufficient availability of pure Nitrotoga cultures has limited our understanding of their physiological and genomic characteristics. Here, we isolated the 'Ca. Nitrotoga' sp. strain AM1P, from a previously enriched Nitrotoga culture, using an improved isolation strategy. Although 'Ca. Nitrotoga' have been recognized as cold-adapted NOB, the strain AM1P had a slightly higher optimum growth temperature at 23°C. Strain AM1P showed a pH optimum of 8.3 and was not inhibited even at high nitrite concentrations (20 mM). We obtained the complete genome of the strain and compared the genome profile to five previously sequenced 'Ca. Nitrotoga' strains. Comparative genomics suggested that lactate dehydrogenase may be only encoded in the strain AM1P and closely related genomes. While the growth yield of AM1P did not change, we observed faster growth in the presence of lactate in comparison to purely chemolithoautotrophic growth. The characterization of the new strain AM1P sheds light on the physiological adaptation of this environmentally important, but understudied genus 'Ca. Nitrotoga'.


Assuntos
Gallionellaceae/fisiologia , Genoma Bacteriano , Crescimento Quimioautotrófico , L-Lactato Desidrogenase/genética , Ácido Láctico/metabolismo
7.
Br J Haematol ; 181(6): 791-802, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741776

RESUMO

Somatic mutations in the calreticulin (CALR) gene have been found in most patients with JAK2- and MPL-unmutated Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). It has recently been shown that mutant CALR constitutively activates the thrombopoietin receptor MPL and, thus, plays a causal role in the development of MPNs. However, the roles of mutant CALR in human haematopoietic cell differentiation remain predominantly elusive. To examine the impact of the 5-base insertion mutant CALR gene (Ins5) on haematopoietic cell differentiation, we generated induced pluripotent stem cells from an essential thrombocythaemia (ET) patient harbouring a CALR-Ins5 mutation and from a healthy individual (WT). Megakaryopoiesis was more prominent in Ins5-haematopoietic progenitor cells (Ins5-HPCs) than in WT-HPCs, implying that the system recapitulates megakaryocytosis observed in the bone marrow of CALR-mutant ET patients. Ins5-HPCs exhibited elevated expression levels of GATA1 and GATA2, suggesting a premature commitment to megakaryocytic differentiation in progenitor cells. We also demonstrated that 3-hydroxy anagrelide markedly perturbed megakaryopoiesis, but not erythropoiesis. Collectively, we established an in vitro model system that recapitulates megakaryopoiesis caused by mutant CALR. This system can be used to validate therapeutic compounds for MPN patients harbouring CALR mutations and in detailed studies on mutant CALR in human haematological cell differentiation.


Assuntos
Calreticulina/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Mutação , Mielopoese , Calreticulina/genética , Feminino , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Megacariócitos/citologia
8.
Microbiol Immunol ; 62(5): 299-309, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29577369

RESUMO

Persisters are multidrug-tolerant cells that are present within antibiotic-sensitive populations. Persister formation is not induced by genetic mutations, but rather by changes in the degree of expression of some genes. High redundancy has been observed among the pathways that have been hypothesized to respond to specific stresses. In this study, we conducted RNA sequencing of Escherichia coli persisters under various stress conditions to identify common mechanisms. We induced stresses such as glucose or amino acid exhaustion, acid stress and anaerobic conditions, all of which are encountered during bacterial pathogenesis. We found that most genes are differentially expressed depending on the specific stress condition; however, some genes were commonly expressed in persisters in most stress conditions. Commonly expressed genes are expected to be promising therapeutic targets for combating persistent infections. We found that knockdown of aldehyde dehydrogenase (aldB), which was expressed in every condition except for acid stress, decreased persisters in the non-stressed condition. However, the same strain unexpectedly showed an increased number of persisters in the amino acid-limited condition. Because the increase in persister number is glycolytic metabolite-dependent, metabolic flow may play a crucial role in aldB-mediated persister formation. These data suggest that environmental stresses alter persister mechanisms. Identification of environmental influences on persister formation during pathogenesis is therefore necessary to enabling persister eradication.


Assuntos
Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Estresse Fisiológico , Aminoácidos , Vias Biossintéticas , DNA Bacteriano/genética , Escherichia coli/enzimologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Viabilidade Microbiana , Mutação , Fenótipo , RNA Mensageiro/análise , Análise de Sequência de RNA , Transcriptoma , Regulação para Cima
9.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500038

RESUMO

Nitrite-oxidizing bacteria (NOB) are responsible for the second step of nitrification in natural and engineered ecosystems. The recently discovered genus Nitrotoga belongs to the Betaproteobacteria and potentially has high environmental importance. Although environmental clones affiliated with Nitrotoga are widely distributed, the limited number of cultivated Nitrotoga spp. results in a poor understanding of their ecophysiological features. In this study, we successfully enriched the nonmarine cold-adapted Nitrotoga sp. strain AM1 from coastal sand in an eelgrass zone and investigated its physiological characteristics. Multistep-enrichment approaches led to an increase in the abundance of AM1 to approximately 80% of the total bacterial population. AM1 was the only detectable NOB in the bacterial community. The 16S rRNA gene sequence of AM1 was 99.6% identical to that of "Candidatus Nitrotoga arctica," which was enriched from permafrost-affected soil. The highest nitrogen oxidation rate of AM1 was observed at 16°C. The half-saturation constant (Km ) and the generation time were determined to be 25 µM NO2- and 54 h, respectively. The nitrite oxidation rate of AM1 was stimulated at concentrations of <30 mM NH4Cl but completely inhibited at 50 mM NH4Cl. AM1 can grow well under specific environmental conditions, such as low temperature and in the presence of a relatively high concentration of free ammonia. These results help improve our comprehension of the functional importance of NitrotogaIMPORTANCE Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process of the nitrogen cycle. Recent studies have suggested that the organisms of the novel NOB genus Nitrotoga were widely distributed and played a functional role in natural and engineered ecosystems. However, only a few Nitrotoga enrichments have been obtained, and little is known about their ecology and physiology. In this study, we successfully enriched a Nitrotoga sp. from sand in a shallow coastal marine ecosystem and undertook a physiological characterization. The laboratory experiments showed that the Nitrotoga enrichment culture could adapt not only to low temperature but also to relatively high concentrations of free ammonia. The determination of as-yet-unknown unique characteristics of Nitrotoga contributes to the improvement of our insights into the microbiology of nitrification.


Assuntos
Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Sedimentos Geológicos/microbiologia , Nitritos/metabolismo , Amônia/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/genética , Temperatura Baixa , Oxirredução
10.
Mar Drugs ; 15(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398249

RESUMO

Bioassay-guided separation of a lipophilic extract of the crinoid Alloeocomatella polycladia, inhibiting the activity of HCV NS3 helicase, yielded two groups of molecules: cholesterol sulfate and four new aromatic sulfates 1-4. The structures of the aromatics were elucidated by spectroscopic analysis in addition to theoretical studies. The aromatic sulfates 1-4 showed moderate inhibition against NS3 helicase with IC50 values of 71, 95, 7, and 5 µM, respectively.


Assuntos
Antivirais/farmacologia , Organismos Aquáticos/química , Equinodermos/química , RNA Helicases/antagonistas & inibidores , Sulfatos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Hepacivirus/efeitos dos fármacos
11.
Water Sci Technol ; 76(11-12): 3171-3180, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29210703

RESUMO

Nitrifying granules have a high sedimentation property and an ability to maintain a large amount of nitrifying bacteria in a reaction tank. Our group has examined the formation process of nitrifying granules and achieved high-rate nitrification for an inorganic synthetic wastewater using these granules. In this research, a pilot-scale test plant with an 850-liter reaction tank was assembled in a semiconductor manufacturing factory in order to conduct a continuous water conduction test using real electronics industry wastewater. The aim was to observe the formation of nitrifying granules and determine the maximum ammonia removal rate. The average granule diameter formed during the experiment was 780 µm and the maximum ammonia removal rate was observed to be 1.5 kgN·m-3·day-1 at 20 °C, which is 2.5-5 times faster than traditional activated sludge methods. A fluorescence in situ hybridization analysis showed that ß-proteobacterial ammonia oxidizing bacteria and the Nitrospira-like nitrite-oxidizing bacteria dominate the bacteria population in the granules, and their strong aggregation capacity might confer some benefits to the formation of these nitrifying granules.


Assuntos
Amônia/química , Reatores Biológicos/microbiologia , Resíduo Eletrônico/análise , Resíduos Industriais/análise , Águas Residuárias/química , Bactérias , Nitrificação , Nitritos , Esgotos/microbiologia
12.
Biotechnol Bioeng ; 112(6): 1263-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25565074

RESUMO

Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 µm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Miócitos Cardíacos/fisiologia , Oxigênio/análise , Animais , Humanos , Microeletrodos , Miócitos Cardíacos/metabolismo , Consumo de Oxigênio , Ratos
13.
Org Biomol Chem ; 13(15): 4589-95, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25777799

RESUMO

The representative DNA-labeling agent 5-ethynyl-2'-deoxyuridine (EdU) was chemically modified to improve its function. Chemical monophosphorylation was expected to enhance the efficiency of the substrate in DNA polymerization by circumventing the enzymatic monophosphorylation step that consumes energy. In addition, to enhance cell permeability, the phosphates were protected with bis-pivaloyloxymethyl that is stable in buffer and plasma, and degradable inside various cell types. The phosphorylated EdU (PEdU) was less toxic than EdU, and had the same or a slightly higher DNA-labeling ability in vitro. PEdU was also successfully applied to DNA labeling in vivo. In conclusion, PEdU can be used as a less toxic DNA-labeling agent for studies that require long-term cell survival or very sensitive cell lines.


Assuntos
DNA/análise , Desoxiuridina/análogos & derivados , Células 3T3 , Animais , DNA/metabolismo , Desoxiuridina/administração & dosagem , Desoxiuridina/química , Desoxiuridina/metabolismo , Células HeLa , Humanos , Camundongos , Fosforilação , Coloração e Rotulagem/métodos
14.
Int J Mol Sci ; 16(8): 18439-53, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26262613

RESUMO

Hepatitis C virus (HCV) is an important etiological agent of severe liver diseases, including cirrhosis and hepatocellular carcinoma. The HCV genome encodes nonstructural protein 3 (NS3) helicase, which is a potential anti-HCV drug target because its enzymatic activity is essential for viral replication. Some anthracyclines are known to be NS3 helicase inhibitors and have a hydroxyanthraquinone moiety in their structures; mitoxantrone, a hydroxyanthraquinone analogue, is also known to inhibit NS3 helicase. Therefore, we hypothesized that the hydroxyanthraquinone moiety alone could also inhibit NS3 helicase. Here, we performed a structure-activity relationship study on a series of hydroxyanthraquinones by using a fluorescence-based helicase assay. Hydroxyanthraquinones inhibited NS3 helicase with IC50 values in the micromolar range. The inhibitory activity varied depending on the number and position of the phenolic hydroxyl groups, and among different hydroxyanthraquinones examined, 1,4,5,8-tetrahydroxyanthraquinone strongly inhibited NS3 helicase with an IC50 value of 6 µM. Furthermore, hypericin and sennidin A, which both have two hydroxyanthraquinone-like moieties, were found to exert even stronger inhibition with IC50 values of 3 and 0.8 µM, respectively. These results indicate that the hydroxyanthraquinone moiety can inhibit NS3 helicase and suggest that several key chemical structures are important for the inhibition.


Assuntos
Antracenos/farmacologia , Antraquinonas/farmacologia , Antivirais/farmacologia , Hepacivirus/enzimologia , Perileno/análogos & derivados , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Antracenos/química , Antraquinonas/química , Antivirais/química , Linhagem Celular , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Perileno/química , Perileno/farmacologia , RNA Helicases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
15.
Environ Microbiol ; 16(10): 3030-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25312601

RESUMO

Nitrification is an important process in the biogeochemical nitrogen cycle and is widely exploited in biological wastewater treatment. Recently, Nitrospira has been recognized as the numerically dominant nitrite-oxidizing bacterial genus and is primarily responsible for the second step of aerobic nitrification. Nevertheless, the physiological properties of Nitrospira remain poorly understood because the organisms are difficult to isolate and culture. Here, we report a novel cultivation strategy for obtaining members of the Nitrospira sublineage I in pure culture. The method combines: (i) selective enrichment of Nitrospira using a continuous feeding reactor and (ii) purification followed by sub-cultivation via a cell sorting system by focusing on the unique characteristics of Nitrospira forming spherical micro-colonies. This strategy is potentially applicable to other uncultured or unisolated Nitrospira and could accelerate the physiological and biochemical understandings of this important group of organisms.


Assuntos
Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/ultraestrutura , Técnicas Bacteriológicas/métodos , Nitrificação , Filogenia
16.
J Enzyme Inhib Med Chem ; 29(2): 223-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23432541

RESUMO

Hepatitis C virus nonstructural protein 3 (NS3) helicase is a promising target for developing new therapeutics. In this study, we identified cholesterol sulfate (CS) as a novel NS3 helicase inhibitor (IC50 = 1.7 ± 0.2 µM with a Hill coefficient of 3.9) by screening the extracts from marine organisms. The lack of the sulfate group, sterol structure or alkyl side chain of CS diminished the inhibition, suggesting that an anion binding and hydrophobic region in NS3 may be a target site of CS. It was further found that CS partly inhibits NS3-RNA binding activity, but exerted no or less inhibition against ATPase and serine protease activities. Moreover, we demonstrated that CS probably does not bind to RNA. Our findings suggest that CS may inhibit NS3 helicase not by abolishing the other NS3 activities but by inducing conformational changes via interaction with possible allosteric sites of NS3.


Assuntos
Antivirais/farmacologia , Ésteres do Colesterol/farmacologia , Hepacivirus/efeitos dos fármacos , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antivirais/isolamento & purificação , Organismos Aquáticos/química , Ésteres do Colesterol/isolamento & purificação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hepacivirus/enzimologia , Estrutura Molecular , Ligação Proteica , Serina Proteases/metabolismo
17.
Mar Drugs ; 12(1): 462-76, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24451189

RESUMO

Hepatitis C virus (HCV) is an important etiological agent that is responsible for the development of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV nonstructural protein 3 (NS3) helicase is a possible target for novel drug development due to its essential role in viral replication. In this study, we identified halisulfate 3 (hal3) and suvanine as novel NS3 helicase inhibitors, with IC50 values of 4 and 3 µM, respectively, from a marine sponge by screening extracts of marine organisms. Both hal3 and suvanine inhibited the ATPase, RNA binding, and serine protease activities of NS3 helicase with IC50 values of 8, 8, and 14 µM, and 7, 3, and 34 µM, respectively. However, the dengue virus (DENV) NS3 helicase, which shares a catalytic core (consisting mainly of ATPase and RNA binding sites) with HCV NS3 helicase, was not inhibited by hal3 and suvanine, even at concentrations of 100 µM. Therefore, we conclude that hal3 and suvanine specifically inhibit HCV NS3 helicase via an interaction with an allosteric site in NS3 rather than binding to the catalytic core. This led to the inhibition of all NS3 activities, presumably by inducing conformational changes.


Assuntos
Hepacivirus/enzimologia , Naftalenos/química , Naftalenos/farmacologia , Poríferos/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sesterterpenos/química , Sesterterpenos/farmacologia , Ésteres do Ácido Sulfúrico/química , Ésteres do Ácido Sulfúrico/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Elétrons , Naftalenos/isolamento & purificação , RNA Viral/metabolismo , Serina Proteases/química , Sesterterpenos/isolamento & purificação , Ésteres do Ácido Sulfúrico/isolamento & purificação
18.
Molecules ; 19(4): 4006-20, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24699145

RESUMO

The helicase portion of the hepatitis C virus nonstructural protein 3 (NS3) is considered one of the most validated targets for developing direct acting antiviral agents. We isolated polybrominated diphenyl ether (PBDE) 1 from a marine sponge as an NS3 helicase inhibitor. In this study, we evaluated the inhibitory effects of PBDE (1) on the essential activities of NS3 protein such as RNA helicase, ATPase, and RNA binding activities. The structure-activity relationship analysis of PBDE (1) against the HCV ATPase revealed that the biphenyl ring, bromine, and phenolic hydroxyl group on the benzene backbone might be a basic scaffold for the inhibitory potency.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Éteres Difenil Halogenados/farmacologia , Poríferos/química , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Adenosina Trifosfatases/química , Animais , Antivirais/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Éteres Difenil Halogenados/isolamento & purificação , Hepacivirus/química , Hepacivirus/enzimologia , Humanos , RNA Helicases/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/química
19.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38400564

RESUMO

Ammonia-oxidizing bacteria, key players in the nitrogen cycle, have been the focus of extensive research. Numerous novel species have been isolated and their growth dynamics were studied. Despite these efforts, controlling their growth to obtain diverse physiological findings remains a challenge. These bacteria often fail to grow, even under optimal conditions. This unpredictable growth pattern could be viewed as a survival strategy. Understanding this heterogeneous behavior could enhance our ability to culture these bacteria. In this study, the variation in the growth rate was quantified for the ammonia-oxidizing bacterium Nitrosomonas mobilis Ms1. Our findings revealed significant growth rate variation under low inoculum conditions. Interestingly, higher cell densities resulted in more stable cultures. A comparative analysis of three Nitrosomonas species showed a correlation between growth rate variation and culture failure. The greater the variation in growth rate, the higher the likelihood of culture failure.


Assuntos
Amônia , Bactérias , Oxirredução , Ciclo do Nitrogênio
20.
Biodes Res ; 6: 0028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516182

RESUMO

The global increase in the prevalence of drug-resistant bacteria has necessitated the development of alternative treatments that do not rely on conventional antimicrobial agents. Using bacteriophage-derived lytic enzymes in antibacterial therapy shows promise; however, a thorough comparison and evaluation of their bactericidal efficacy are lacking. This study aimed to compare and investigate the bactericidal activity and spectrum of such lytic enzymes, with the goal of harnessing them for antibacterial therapy. First, we examined the bactericidal activity of spanins, endolysins, and holins derived from 2 Escherichia coli model phages, T1 and T7. Among these, T1-spanin exhibited the highest bactericidal activity against E. coli. Subsequently, we expressed T1-spanin within bacterial cells and assessed its bactericidal activity. T1-spanin showed potent bactericidal activity against all clinical isolates tested, including bacterial strains of 111 E. coli, 2 Acinetobacter spp., 3 Klebsiella spp., and 3 Pseudomonas aeruginosa. In contrast, T1 phage-derived endolysin showed bactericidal activity against E. coli and P. aeruginosa, yet its efficacy against other bacteria was inferior to that of T1-spanin. Finally, we developed a phage-based technology to introduce the T1-spanin gene into target bacteria. The synthesized non-proliferative phage exhibited strong antibacterial activity against the targeted bacteria. The potent bactericidal activity exhibited by spanins, combined with the novel phage synthetic technology, holds promise for the development of innovative antimicrobial agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa