RESUMO
The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.
Assuntos
Glucose , Hepatócitos , Hepatócitos/metabolismo , Glucose/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ácido Láctico , Trifosfato de Adenosina/metabolismo , PiruvatosRESUMO
Cytokines released from microglia mediate defensive responses in the brain, but the underlying mechanisms are obscure. One proposed process is that nucleotide leakage or release from surrounding cells is sensed by metabotropic (P2Y) and ionotropic (P2X) purinergic receptors, which may trigger long-term intracellular Ca(2+) flux and tumor necrosis factor α (TNF-α) release. Indeed, 3h of exposure to ATP was required to evoke TNF-α release from a murine microglial cell line (MG5). A Ca(2+) chelator, ethylene glycol tetraacetic acid (EGTA), reduced ATP-induced TNF-α release, suggesting that intracellular Ca(2+) is important in this response. Therefore, Ca(2+) sensor genes (YC3.6) were transfected into MG5 cells to investigate the Ca(2+) dynamics underlying ATP-induced TNF-α release. The results demonstrated ATP-induced biphasic Ca(2+) mobilization mediated by P2Y (~5min) and P2X7 receptors (5-30min). Moreover, Ca(2+) spiking activity in cell processes progressively increased with a reduction in P2X7 receptor-mediated Ca(2+) elevation during 3-h ATP stimulation. Increased Ca(2+) spiking activity paralleled the reduction in thapsigargin-sensitive internal Ca(2+) stores, dendrite extension, and expression of macrophage scavenger receptors with collagenous structure. The Ca(2+) spiking activity was enhanced by a P2X7 receptor antagonist (A438079), but inhibited by a store-operated channel antagonist (SKF96365) or by co-transfection of small interference ribonucleic acid (siRNA) targeted on the channel component (Orai1). Furthermore, ATP-induced TNF-α release was enhanced by A438079 but was inhibited by SKF96365. Because store-operated channels (Stim1/Orai1) were expressed both in MG5 and primary microglial cultures, we suggest that P2X7 receptor signaling inhibits store-operated channels during ATP stimulation, and disinhibition of this process gates TNF-α release from microglial cells.
Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Microglia/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Trifosfato de Adenosina/farmacologia , Adenoviridae/efeitos dos fármacos , Adenoviridae/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Perfilação da Expressão Gênica , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Biológicos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetrazóis/farmacologia , TransfecçãoRESUMO
Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.
Assuntos
Glucose , Fígado , Glucose/metabolismo , Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismoRESUMO
This study aimed to examine the effects of hydrogen gas (H2) produced by intestinal microbiota on participant conditioning to prevent intense exercise-induced damage. In this double-blind, randomized, crossover study, participants ingested H2-producing milk that induced intestinal bacterial H2 production or a placebo on the trial day, 4 h before performing an intense exercise at 75% maximal oxygen uptake for 60 min. Blood marker levels and respiratory variables were measured before, during, and after exercise. Visual analog scale scores of general and lower limb muscle soreness evaluated were 3.8- and 2.3-fold higher, respectively, on the morning after treatment than that before treatment during the placebo trial, but not during the test beverage consumption. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations and production rates significantly increased with placebo consumption; no changes were observed with test beverage consumption. After exercise, relative blood lactate levels with H2-producing milk consumption were lower than those with placebo consumption. A negative correlation was observed between the variation of 8-OHdG and the area under the curve (AUC) of breath H2 concentrations. Lipid oxidation AUC was 1.3-fold higher significantly with H2-producing milk than with placebo consumption. Conclusively, activating intestinal bacterial H2 production by consuming a specific beverage may be a new strategy for promoting recovery and conditioning in athletes frequently performing intense exercises.
Assuntos
Exercício Físico , Músculo Esquelético , Adulto , Masculino , Humanos , Projetos Piloto , Estudos Cross-Over , Exercício Físico/fisiologia , HidrogênioRESUMO
Glycolysis is the metabolic pathway that converts glucose into pyruvate, whereas fermentation can then produce lactate from pyruvate. Here, we developed single fluorescent protein (FP)-based lactate and pyruvate indicators with low EC50 for trace detection of metabolic molecules and live cell imaging and named them "Green Lindoblum" and "Green Pegassos," respectively. Green Lindoblum (EC50 of 30 µM for lactate) and Green Pegassos (EC50 of 70 µM for pyruvate) produced a 5.2- and 3.3-fold change in fluorescence intensity in response to lactate and pyruvate, respectively. Green Lindoblum measured lactate levels in mouse plasma, and Green Pegassos in combination with D-serine dehydratase successfully estimated D-serine levels released from mouse primary cultured neurons and astrocytes by measuring pyruvate level. Furthermore, live cell imaging analysis revealed their utility for dual-colour imaging, and the interplay between lactate, pyruvate, and Ca2+ in human induced pluripotent stem cell-derived cardiomyocytes. Therefore, Green Lindoblum and Green Pegassos will be useful tools that detect specific molecules in clinical use and monitor the interplay of metabolites and other related molecules in diverse cell types.
Assuntos
Proteínas de Fluorescência Verde/metabolismo , Ácido Láctico/sangue , Proteínas Recombinantes/metabolismo , Serina/análise , Animais , Técnicas Biossensoriais/métodos , Células Cultivadas , Feminino , Glicólise , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Ácido Láctico/metabolismo , Camundongos Endogâmicos ICR , Imagem Molecular/métodos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Oligomicinas/farmacologia , Gravidez , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/genéticaRESUMO
PURPOSE: To examine the effect of hydrogen (H2)-producing milk, which induces H2 production by intestinal microbiota, on the prevention of dry eye disease. METHODS: A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted in humans. Of 118 candidates aged 20-60 years who were using visual display terminals daily, 54 subjects (mean age, 42.4 years) with mild-to-moderate dry eye symptoms, who were not dry eye patients based on the 2006 Japanese Diagnostic Criteria for Dry Eye, were included in the study. Subjects were assigned to the H2-producing milk group or the placebo group. They were instructed to ingest the assigned test beverage once per day for three consecutive weeks. Breath H2 concentration, fluorescein tear film breakup time (fTBUT), Schirmer's test, 8-OHdG concentration in tears, reported ocular symptoms using the dry eye-related QOL score questionnaire, and the visual analogue scale were assessed at weeks 0 and 3. RESULTS: Change in fTBUT in the H2-producing milk group was significantly greater than that in the placebo group. A significant decline in fTBUT was observed in the placebo group (pâ¯=â¯0.04), but not the H2-producing group (pâ¯=â¯0.26). This phenomenon was strongly observed in females. We found a positive correlation between the change in fTBUT and net H2 production, and a negative correlation between the change in 8-OHdG concentration and net H2 production in young females. CONCLUSIONS: H2-producing milk appeared to retard the decline in tear stability and may prevent short fTBUT-type dry eye by decreasing oxidative stress in the lacrimal functional unit.
Assuntos
Terminais de Computador , Síndromes do Olho Seco/prevenção & controle , Hidrogênio/metabolismo , Leite , Lágrimas/metabolismo , Adulto , Animais , Método Duplo-Cego , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Soluções Oftálmicas/administração & dosagem , Adulto JovemRESUMO
First generation H1 histamine receptor antagonists, such as d-chlorpheniramine (d-CPA) and diphenhydramine, produce drowsiness in humans. They are currently used as over-the-counter sleep aids. However, the mechanisms underlying drowsiness induced by these H1 histamine receptor antagonists remain obscure because they produce heterogeneous receptor-independent actions. Ketotifen is a second generation H1 histamine receptor antagonist which is more permeable to the brain than newer H1 histamine receptor antagonists. Therefore, to access sleep-inducing profiles by H1 histamine receptor blocking actions, the present study compared the dose-dependent effects of diphenhydramine and ketotifen (1-40 mg/kg, intraperitoneal injection at dark onset time) on daily sleep-wake patterns in rats. Ketotifen dose-dependently decreased rapid-eye-movement (REM) sleep and increased non-REM sleep by amplifying slow-wave electroencephalogram powers. Diphenhydramine at 4 mg/kg transiently increased non-REM sleep and reduced REM sleep similar to the effects of ketotifen. The larger injections of diphenhydramine (10-40 mg/kg), however, reduced non-REM sleep, abolished slow-wave enhancements and facilitated wakefulness. The bi-directional action of diphenhydramine on sleep is similar to our former results using d-CPA. Taken together, the arousal effects caused by over-dose administrations of the first generation H1 histamine receptor antagonists may be mediated by H1 histamine receptor-independent actions. To further examine the tolerance of ketotifen-induced sleep, 3 mg/kg ketotifen was injected daily for 5 days 3 h before light onset time. These experiments consistently enhanced non-REM-sleep at the end of the active phase of rats, suggesting that ketotifen may function as a desirable sleep aid although the coincidental REM sleep reduction requires attention.