Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 17(7): 4304-4310, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613891

RESUMO

Silicon (Si) zigzag nanowires (NWs) have a great potential in many applications because of its high surface/volume ratio. However, fabricating Si zigzag NWs has been challenging. In this work, a diffusion-controlled metal-assisted chemical etching method is developed to fabricate Si zigzag NWs. By tailoring the composition of etchant to change its diffusivity, etching direction, and etching time, various zigzag NWs can be easily fabricated. In addition, it is also found that a critical length of NW (>1 µm) is needed to form zigzag nanowires. Also, the amplitude of zigzag increases as the location approaches the center of the substrate and the length of zigzag nanowire increases. It is also demonstrated that such zigzag NWs can help the silicon substrate for self-cleaning and antireflection. This method may provide a feasible and economical way to fabricate zigzag NWs and novel structures for broad applications.

2.
Nano Lett ; 17(3): 1365-1370, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28135103

RESUMO

Compact graphene film electrodes with a high ion-accessible surface area have the promising potential to realize high-density electrochemical energy storage (or high volumetric capacitance), which is vital for the development of flexible, portable, and wearable energy storage devices. Here, a novel, ultrafast strategy for stitching graphene sheets into films, in which p-phenylenediamine (PPD) molecules are uniformly intercalated between the graphene sheets, is simply constructed at the ethanol/water interface. Due to uniformly interlayer spacing (∼1.1 nm), good wettability, and an interconnected ion transport channel, the binder-free PPD-graphene film with a high packing density (1.55 g cm-3) delivers an ultrahigh volumetric capacitance (711 F cm-3 at a current density of 0.5 A g-1), high rate performance, high power and energy densities, and excellent cycling stability in aqueous electrolytes. This interfacial stitching strategy holds new promise for the future design of enhanced electrochemical energy-storage devices.

3.
Nano Lett ; 17(2): 1014-1019, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28103049

RESUMO

Kinked silicon (Si) nanowires (NWs) have many special properties that make them attractive for a number of applications, such as microfluidics devices, microelectronic devices, and biosensors. However, fabricating NWs with controlled three-dimensional (3D) geometry has been challenging. In this work, a novel method called alternating metal-assisted chemical etching is reported for the fabrication of kinked Si NWs with controlled 3D geometry. By the use of multiple etchants with carefully selected composition, one can control the number of kinks, their locations, and their angles by controlling the number of etchant alternations and the time in each etchant. The resulting number of kinks equals the number times the etchant is alternated, the length of each segment separated by kinks has a linear relationship with the etching time, and the kinking angle is related to the surface tension and viscosity of the etchants. This facile method may provide a feasible and economical way to fabricate novel silicon nanowires, nanostructures, and devices for broad applications.


Assuntos
Ouro/química , Nanofios/química , Silício/química , Titânio/química , Microesferas , Nanotecnologia , Tamanho da Partícula , Fenômenos Físicos , Poliestirenos/química , Propriedades de Superfície
4.
Nanoscale Res Lett ; 12(1): 185, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28282979

RESUMO

Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.

5.
ACS Appl Mater Interfaces ; 9(10): 8437-8442, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28244729

RESUMO

As microelectronics are trending toward smaller packages and integrated circuit (IC) stacks nowadays, underfill, the polymer composite filled in between the IC chip and the substrate, becomes increasingly important for interconnection reliability. However, traditional underfills cannot meet the requirements for low-profile and fine pitch in high density IC stacking packages. Post-applied underfills have difficulties in flowing into the small gaps between the chip and the substrate, while pre-applied underfills face filler entrapment at bond pads. In this report, we present a self-patterning underfilling technology that uses selective wetting of underfill on Cu bond pads and Si3N4 passivation via surface energy engineering. This novel process, fully compatible with the conventional underfilling process, eliminates the issue of filler entrapment in typical pre-applied underfilling process, enabling high density and fine pitch IC die bonding.

6.
Nanoscale ; 8(36): 16292-16301, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27714086

RESUMO

The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo2S4 nanotube array/carbon aerogel and NiCo2O4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg-1 and 47.5 Wh kg-1 at a power density of 400 W kg-1, respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

7.
Nanoscale ; 7(34): 14401-12, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26248645

RESUMO

Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg(-1) at a power density of 600 W kg(-1). The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa