Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259999

RESUMO

The many-body simulation of quantum systems is an active field of research that involves several different methods targeting various computing platforms. Many methods commonly employed, particularly coupled cluster methods, have been adapted to leverage the latest advances in modern high-performance computing. Selected configuration interaction (sCI) methods have seen extensive usage and development in recent years. However, the development of sCI methods targeting massively parallel resources has been explored only in a few research works. Here, we present a parallel, distributed memory implementation of the adaptive sampling configuration interaction approach (ASCI) for sCI. In particular, we will address the key concerns pertaining to the parallelization of the determinant search and selection, Hamiltonian formation, and the variational eigenvalue calculation for the ASCI method. Load balancing in the search step is achieved through the application of memory-efficient determinant constraints originally developed for the ASCI-PT2 method. The presented benchmarks demonstrate near optimal speedup for ASCI calculations of Cr2 (24e, 30o) with 106, 107, and 3 × 108 variational determinants on up to 16 384 CPUs. To the best of the authors' knowledge, this is the largest variational ASCI calculation to date.

2.
Phys Rev Lett ; 129(13): 130603, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206437

RESUMO

As a central thermodynamic property, free energy enables the calculation of virtually any equilibrium property of a physical system, allowing for the construction of phase diagrams and predictions about transport, chemical reactions, and biological processes. Thus, methods for efficiently computing free energies, which in general is a difficult problem, are of great interest to broad areas of physics and the natural sciences. The majority of techniques for computing free energies target classical systems, leaving the computation of free energies in quantum systems less explored. Recently developed fluctuation relations enable the computation of free energy differences in quantum systems from an ensemble of dynamic simulations. While performing such simulations is exponentially hard on classical computers, quantum computers can efficiently simulate the dynamics of quantum systems. Here, we present an algorithm utilizing a fluctuation relation known as the Jarzynski equality to approximate free energy differences of quantum systems on a quantum computer. We discuss under which conditions our approximation becomes exact, and under which conditions it serves as a strict upper bound. Furthermore, we successfully demonstrate a proof of concept of our algorithm using the transverse field Ising model on a real quantum processor. As quantum hardware continues to improve, we anticipate that our algorithm will enable computation of free energy differences for a wide range of quantum systems useful across the natural sciences.

3.
J Chem Phys ; 155(23): 234106, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34937349

RESUMO

Quantum computation promises to provide substantial speedups in many practical applications with a particularly exciting one being the simulation of quantum many-body systems. Adiabatic state preparation (ASP) is one way that quantum computers could recreate and simulate the ground state of a physical system. In this paper, we explore a novel approach for classically simulating the time dynamics of ASP with high accuracy and with only modest computational resources via an adaptive sampling configuration interaction scheme for truncating the Hilbert space to only the most important determinants. We verify that this truncation introduces negligible error and use this new approach to simulate ASP for sets of small molecular systems and Hubbard models. Furthermore, we examine two approaches to speeding up ASP when performed on quantum hardware: (i) using the complete active space configuration interaction (CASCI) wave function instead of the Hartree-Fock initial state and (ii) a nonlinear interpolation between the initial and target Hamiltonians. We find that starting with a CASCI wave function with a limited active space yields substantial speedups for many of the systems examined, while nonlinear interpolation does not. In additional, we observe interesting trends in the minimum gap location (based on the initial state) as well as how state preparation time can depend on certain molecular properties, such as the number of valence electrons. Importantly, we find that the required state preparation times do not show an immediate exponential wall that would preclude an efficient run of ASP on actual hardware.

4.
J Chem Phys ; 154(12): 121101, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33810679

RESUMO

Photo-emission spectroscopy directly probes individual electronic states, ranging from single excitations to high-energy satellites, which simultaneously represent multiple quasiparticles (QPs) and encode information about electronic correlation. The first-principles description of the spectra requires an efficient and accurate treatment of all many-body effects. This is especially challenging for inner valence excitations where the single QP picture breaks down. Here, we provide the full valence spectra of small closed-shell molecules, exploring the independent and interacting quasiparticle regimes, computed with the fully correlated adaptive sampling configuration interaction method. We critically compare these results to calculations with the many-body perturbation theory, based on the GW and vertex corrected GWΓ approaches. The latter explicitly accounts for two-QP quantum interactions, which have often been neglected. We demonstrate that for molecular systems, the vertex correction universally improves the theoretical spectra, and it is crucial for the accurate prediction of QPs as well as capturing the rich satellite structures of high-energy excitations. GWΓ offers a unified description across all relevant energy scales. Our results suggest that the multi-QP regime corresponds to dynamical correlations, which can be described via perturbation theory.

5.
J Chem Phys ; 147(15): 154105, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055342

RESUMO

Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.

6.
J Chem Phys ; 145(4): 044112, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27475353

RESUMO

Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr2 molecule. We demonstrate for systems like Cr2 that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C2.

7.
Phys Rev Lett ; 115(4): 045301, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26252690

RESUMO

We have performed simulations of the principal deuterium Hugoniot curve using coupled electron-ion Monte Carlo calculations. Using highly accurate quantum Monte Carlo methods for the electrons, we study the region of maximum compression along the Hugoniot, where the system undergoes a continuous transition from a molecular fluid to a monatomic fluid. We include all relevant physical corrections so that a direct comparison to experiment can be made. Around 50 GPa we find a maximum compression of 4.85. This compression is approximately 5.5% higher than previous theoretical predictions and 15% higher than the most accurate experimental data. Thus first-principles simulations encompassing the most advanced techniques are in disagreement with the results of the best experiments.

8.
J Chem Phys ; 143(12): 124308, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26429012

RESUMO

With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. In this work, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. We report ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.

9.
J Chem Theory Comput ; 18(2): 687-702, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35034448

RESUMO

Iron-sulfur clusters comprise an important functional motif in the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from correlated, large active space calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of the [Fe(II/III)4S4(SMe)4]-2 clusters using two complementary, correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (<1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the singlet and the spin state 2S + 1 = 19, corresponding to a maximal number of Fe-d electrons being unpaired and of parallel spin, is strongly geometry dependent, changing by a factor of 3 upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap compared to typical mean-field orbital approaches. Our results show the need for performing large active space calculations to unveil the challenging electronic structure of these complex catalytic centers and should serve as accurate starting points for fully correlated treatments upon inclusion of dynamical correlation outside the active space.

10.
J Chem Phys ; 135(18): 184109, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22088054

RESUMO

We perform release-node quantum Monte Carlo simulations on the first row diatomic molecules in order to assess how accurately their ground-state energies can be obtained. An analysis of the fermion-boson energy difference is shown to be strongly dependent on the nuclear charge, Z, which in turn determines the growth of variance of the release-node energy. It is possible to use maximum entropy analysis to extrapolate to ground-state energies only for the low Z elements. For the higher Z dimers beyond boron, the error growth is too large to allow accurate data for long enough imaginary times. Within the limit of our statistics we were able to estimate, in atomic units, the ground-state energy of Li(2) (-14.9947(1)), Be(2) (-29.3367(7)), and B(2)(-49.410(2)).

11.
J Chem Theory Comput ; 16(4): 2340-2354, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32109055

RESUMO

The complete active space self-consistent field (CASSCF) method is the principal approach employed for studying strongly correlated systems. However, exact CASSCF can only be performed on small active spaces of ∼20 electrons in ∼20 orbitals due to exponential growth in the computational cost. We show that employing the Adaptive Sampling Configuration Interaction (ASCI) method as an approximate Full CI solver in the active space allows CASSCF-like calculations within chemical accuracy (<1 kcal/mol for relative energies) in active spaces with more than ∼50 active electrons in ∼50 active orbitals, significantly increasing the sizes of systems amenable to accurate multiconfigurational treatment. The main challenge with using any selected CI-based approximate CASSCF is the orbital optimization problem; they tend to exhibit large numbers of local minima in orbital space due to their lack of invariance to active-active rotations (in addition to the local minima that exist in exact CASSCF). We highlight methods that can avoid spurious local extrema as a practical solution to the orbital optimization problem. We employ ASCI-SCF to demonstrate a lack of polyradical character in moderately sized periacenes with up to 52 correlated electrons and compare against heat-bath CI on an iron porphyrin system with more than 40 correlated electrons.

12.
J Chem Theory Comput ; 16(4): 2139-2159, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32159951

RESUMO

Recent advances in selected configuration interaction methods have made them competitive with the most accurate techniques available and, hence, creating an increasingly powerful tool for solving quantum Hamiltonians. In this work, we build on recent advances from the adaptive sampling configuration interaction (ASCI) algorithm. We show that a useful paradigm for generating efficient selected CI/exact diagonalization algorithms is driven by fast sorting algorithms, much in the same way iterative diagonalization is based on the paradigm of matrix vector multiplication. We present several new algorithms for all parts of performing a selected CI, which includes new ASCI search, dynamic bit masking, fast orbital rotations, fast diagonal matrix elements, and residue arrays. The ASCI search algorithm can be used in several different modes, which includes an integral driven search and a coefficient driven search. The algorithms presented here are fast and scalable, and we find that because they are built on fast sorting algorithms they are more efficient than all other approaches we considered. After introducing these techniques, we present ASCI results applied to a large range of systems and basis sets to demonstrate the types of simulations that can be practically treated at the full-CI level with modern methods and hardware, presenting double- and triple-ζ benchmark data for the G1 data set. The largest of these calculations is Si2H6 which is a simulation of 34 electrons in 152 orbitals. We also present some preliminary results for fast deterministic perturbation theory simulations that use hash functions to maintain high efficiency for treating large basis sets.

13.
J Phys Chem Lett ; 11(20): 8922-8929, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022176

RESUMO

We report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground-state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavor, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around -863 mEH. However, we find the root-mean-square deviation of the energies from the studied methods to be considerable (1.3 mEH), which in light of the acclaimed performance of each of the methods for smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and calibration purposes going forward.

14.
J Phys Condens Matter ; 30(19): 195901, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29582782

RESUMO

QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

15.
J Chem Theory Comput ; 12(8): 3674-80, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428771

RESUMO

We introduce a new selected configuration interaction plus perturbation theory algorithm that is based on a deterministic analog of our recent efficient heat-bath sampling algorithm. This Heat-bath Configuration Interaction (HCI) algorithm makes use of two parameters that control the trade-off between speed and accuracy, one which controls the selection of determinants to add to a variational wave function and one which controls the selection of determinants used to compute the perturbative correction to the variational energy. We show that HCI provides an accurate treatment of both static and dynamic correlation by computing the potential energy curve of the multireference carbon dimer in the cc-pVDZ basis. We then demonstrate the speed and accuracy of HCI by recovering the full configuration interaction energy of both the carbon dimer in the cc-pVTZ basis and the strongly correlated chromium dimer in the Ahlrichs VDZ basis, correlating all electrons, to an accuracy of better than 1 mHa, in just a few minutes on a single core. These systems have full variational spaces of 3 × 10(14) and 2 × 10(22) determinants, respectively.

16.
Sci Rep ; 6: 31897, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553458

RESUMO

Two powerful theoretical predictions, Anderson localization and the Imry-Ma argument, impose significant restrictions on the phases of matter that can exist in the presence of even the smallest amount of disorder in one-dimensional systems. These predictions forbid electrically conducting states and ordered states respectively. It was thus remarkable that a mechanism to circumvent Anderson localization relying on the presence of correlated disorder was found, that is also realized in certain biomolecular systems. In a similar manner, we show that the Imry-Ma argument can be circumvented, resulting in the formation of stable ordered states with discrete broken symmetries in disordered one dimensional systems. We then investigate other mechanisms by which disorder can destroy an ordered state.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa