Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Anesthesiology ; 140(4): 752-764, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207290

RESUMO

BACKGROUND: Lower fractional inspired oxygen tension (Fio2) during general anesthesia can reduce lung atelectasis. The objectives are to evaluate the effect of two Fio2 (0.4 and 1) during low positive end-expiratory pressure (PEEP) ventilation over lung perfusion distribution, volume, and regional ventilation. These variables were evaluated at two PEEP levels and unilateral lung atelectasis. METHODS: In this exploratory study, 10 healthy female piglets (32.3 ± 3.4 kg) underwent mechanical ventilation in two atelectasis models: (1) bilateral gravitational atelectasis (n = 6), induced by changes in PEEP and Fio2 in three combinations: high PEEP with low Fio2 (Fio2 = 0.4), zero PEEP (PEEP0) with low Fio2 (Fio2 = 0.4), and PEEP0 with high Fio2 (Fio2 = 1); and (2) unilateral atelectasis (n = 6), induced by left bronchial occlusion, with the left lung aerated (Fio2 = 0.21) and low aerated (Fio2 = 1; n = 5 for this step). Measurements were conducted after 10 min in each step, encompassing assessment of respiratory mechanics, oxygenation, and hemodynamics; lung ventilation and perfusion by electrical impedance tomography; and lung aeration and perfusion by computed tomography. RESULTS: During bilateral gravitational atelectasis, PEEP reduction increased atelectasis in dorsal regions, decreased respiratory compliance, and distributed lung ventilation to ventral regions with a parallel shift of perfusion to the same areas. With PEEP0, there were no differences between low and high Fio2 in respiratory compliance (23.9 ± 6.5 ml/cm H2O vs. 21.9 ± 5.0; P = 0.441), regional ventilation, and regional perfusion, despite higher lung collapse (18.6 ± 7.6% vs. 32.7 ± 14.5%; P = 0.045) with high Fio2. During unilateral lung atelectasis, the deaerated lung had a lower shunt (19.3 ± 3.6% vs. 25.3 ± 5.5%; P = 0.045) and lower computed tomography perfusion to the left lung (8.8 ± 1.8% vs. 23.8 ± 7.1%; P = 0.007). CONCLUSIONS: PEEP0 with low Fio2, compared with high Fio2, did not produce significant changes in respiratory system compliance, regional lung ventilation, and perfusion despite significantly lower lung collapse. After left bronchial occlusion, the shrinkage of the parenchyma with Fio2 = 1 enhanced hypoxic pulmonary vasoconstriction, reducing intrapulmonary shunt and perfusion of the nonventilated areas.


Assuntos
Atelectasia Pulmonar , Respiração Artificial , Animais , Feminino , Suínos , Respiração Artificial/métodos , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Atelectasia Pulmonar/diagnóstico por imagem , Atelectasia Pulmonar/terapia , Perfusão , Oxigênio
2.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544216

RESUMO

Radiofrequency (RF) coils for magnetic resonance imaging (MRI) applications serve to generate RF fields to excite the nuclei in the sample (transmit coil) and to pick up the RF signals emitted by the nuclei (receive coil). For the purpose of optimizing the image quality, the performance of RF coils has to be maximized. In particular, the transmit coil has to provide a homogeneous RF magnetic field, while the receive coil has to provide the highest signal-to-noise ratio (SNR). Thus, particular attention must be paid to the coil simulation and design phases, which can be performed with different computer simulation techniques. Being largely used in many sectors of engineering and sciences, machine learning (ML) is a promising method among the different emerging strategies for coil simulation and design. Starting from the applications of ML algorithms in MRI and a short description of the RF coil's performance parameters, this narrative review describes the applications of such techniques for the simulation and design of RF coils for MRI, by including deep learning (DL) and ML-based algorithms for solving electromagnetic problems.

3.
J Clin Monit Comput ; 38(1): 89-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37863862

RESUMO

PURPOSE: This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS: PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS: Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS: In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER: CRD 42021218306, 30/01/2023.


Assuntos
Respiração com Pressão Positiva , Tomografia Computadorizada por Raios X , Humanos , Impedância Elétrica , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração com Pressão Positiva/métodos , Oxigênio
4.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850465

RESUMO

Small target detection is still a challenging task, especially when looking at fast and accurate solutions for mobile or edge applications. In this work, we present YOLO-S, a simple, fast, and efficient network. It exploits a small feature extractor, as well as skip connection, via both bypass and concatenation, and a reshape-passthrough layer to promote feature reuse across network and combine low-level positional information with more meaningful high-level information. Performances are evaluated on AIRES, a novel dataset acquired in Europe, and VEDAI, benchmarking the proposed YOLO-S architecture with four baselines. We also demonstrate that a transitional learning task over a combined dataset based on DOTAv2 and VEDAI can enhance the overall accuracy with respect to more general features transferred from COCO data. YOLO-S is from 25% to 50% faster than YOLOv3 and only 15-25% slower than Tiny-YOLOv3, outperforming also YOLOv3 by a 15% in terms of accuracy (mAP) on the VEDAI dataset. Simulations on SARD dataset also prove its suitability for search and rescue operations. In addition, YOLO-S has roughly 90% of Tiny-YOLOv3's parameters and one half FLOPs of YOLOv3, making possible the deployment for low-power industrial applications.

5.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112172

RESUMO

Direct measurement of electric currents can be prevented by poor accessibility or prohibitive technical conditions. In such cases, magnetic sensors can be used to measure the field in regions adjacent to the sources, and the measured data then can be used to estimate source currents. Unfortunately, this is classified as an Electromagnetic Inverse Problem (EIP), and data from sensors must be cautiously treated to obtain meaningful current measurements. The usual approach requires using suited regularization schemes. On the other hand, behavioral approaches are recently spreading for this class of problems. The reconstructed model is not obliged to follow the physics equations, and this implies approximations which must be accurately controlled, especially if aiming to reconstruct an inverse model from examples. In this paper, a systematic study of the role of different learning parameters (or rules) on the (re-)construction of an EIP model is proposed, in comparison with more assessed regularization techniques. Attention is particularly devoted to linear EIPs, and in this class, a benchmark problem is used to illustrate in practice the results. It is shown that, by applying classical regularization methods and analogous correcting actions in behavioral models, similar results can be obtained. Both classical methodologies and neural approaches are described and compared in the paper.

6.
Anesthesiology ; 136(5): 763-778, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35348581

RESUMO

BACKGROUND: Strong spontaneous inspiratory efforts can be difficult to control and prohibit protective mechanical ventilation. Instead of using deep sedation and neuromuscular blockade, the authors hypothesized that perineural administration of lidocaine around the phrenic nerve would reduce tidal volume (VT) and peak transpulmonary pressure in spontaneously breathing patients with acute respiratory distress syndrome. METHODS: An established animal model of acute respiratory distress syndrome with six female pigs was used in a proof-of-concept study. The authors then evaluated this technique in nine mechanically ventilated patients under pressure support exhibiting driving pressure greater than 15 cm H2O or VT greater than 10 ml/kg of predicted body weight. Esophageal and transpulmonary pressures, electrical activity of the diaphragm, and electrical impedance tomography were measured in pigs and patients. Ultrasound imaging and a nerve stimulator were used to identify the phrenic nerve, and perineural lidocaine was administered sequentially around the left and right phrenic nerves. RESULTS: Results are presented as median [interquartile range, 25th to 75th percentiles]. In pigs, VT decreased from 7.4 ml/kg [7.2 to 8.4] to 5.9 ml/kg [5.5 to 6.6] (P < 0.001), as did peak transpulmonary pressure (25.8 cm H2O [20.2 to 27.2] to 17.7 cm H2O [13.8 to 18.8]; P < 0.001) and driving pressure (28.7 cm H2O [20.4 to 30.8] to 19.4 cm H2O [15.2 to 22.9]; P < 0.001). Ventilation in the most dependent part decreased from 29.3% [26.4 to 29.5] to 20.1% [15.3 to 20.8] (P < 0.001). In patients, VT decreased (8.2 ml/ kg [7.9 to 11.1] to 6.0 ml/ kg [5.7 to 6.7]; P < 0.001), as did driving pressure (24.7 cm H2O [20.4 to 34.5] to 18.4 cm H2O [16.8 to 20.7]; P < 0.001). Esophageal pressure, peak transpulmonary pressure, and electrical activity of the diaphragm also decreased. Dependent ventilation only slightly decreased from 11.5% [8.5 to 12.6] to 7.9% [5.3 to 8.6] (P = 0.005). Respiratory rate did not vary. Variables recovered 1 to 12.7 h [6.7 to 13.7] after phrenic nerve block. CONCLUSIONS: Phrenic nerve block is feasible, lasts around 12 h, and reduces VT and driving pressure without changing respiratory rate in patients under assisted ventilation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Estado Terminal , Modelos Animais de Doenças , Feminino , Humanos , Lidocaína , Nervo Frênico , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Mecânica Respiratória/fisiologia , Suínos , Volume de Ventilação Pulmonar/fisiologia
7.
Sensors (Basel) ; 23(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36616800

RESUMO

In this work, a new hydroelectric basin modelling approach is described and applied to the Pontecosi basin, Italy. Several types of data sources were used to learn the model: a number of weather stations, satellite observations, the reanalysis dataset, and basin data. With the goal of predicting the water level of the basin, the model was composed by three cascade modules. Firstly, different spatial interpolation methods, such as Kriging, Radial Basis Function, and Natural Neighbours, were compared and applied to interpolate the weather stations data nearby the basin area to infer the main environmental variables (air temperature, air humidity, precipitation, and wind speed) in the basin area. Then, using these variables as inputs, a neural network was trained to predict the mean soil moisture concentration over the area, also to improve the low availability due to satellite orbits. Finally, a non-linear auto regressive exogenous input (NARX) model was trained to simulate the basin level with different prediction horizons, using the data from the previous modules and past basin data (water level, discharge flow rate, and turbine flow rate). Accurate predictions of the basin water level were achieved within 1 to 6 h ahead, with mean absolute errors (MAE) between 2 cm and 10 cm, respectively.


Assuntos
Inteligência Artificial , Água , Redes Neurais de Computação , Tempo (Meteorologia) , Análise Espacial , Monitoramento Ambiental/métodos , Previsões
8.
Acta Anaesthesiol Scand ; 65(1): 100-108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931610

RESUMO

BACKGROUND: We aimed to investigate the physiological mechanism and spatial distribution of increased physiological dead-space, an early marker of ARDS mortality, in the initial stages of ARDS. We hypothesized that: increased dead-space results from the spatial redistribution of pulmonary perfusion, not ventilation; such redistribution is not related to thromboembolism (ie, areas with perfusion = 0 and infinite ventilation-perfusion ratio, V ˙ / Q ˙ ), but rather to moderate shifts of perfusion increasing V ˙ / Q ˙ in non-dependent regions. METHODS: Five healthy anesthetized sheep received protective ventilation for 20 hours, while endotoxin was continuously infused. Maps of voxel-level lung ventilation, perfusion, V ˙ / Q ˙ , CO2 partial pressures, and alveolar dead-space fraction were estimated from positron emission tomography at baseline and 20 hours. RESULTS: Alveolar dead-space fraction increased during the 20 hours (+0.05, P = .031), mainly in non-dependent regions (+0.03, P = .031). This was mediated by perfusion redistribution away from non-dependent regions (-5.9%, P = .031), while the spatial distribution of ventilation did not change, resulting in increased V ˙ / Q ˙ in non-dependent regions. The increased alveolar dead-space derived mostly from areas with intermediate V ˙ / Q ˙ (0.5≤ V ˙ / Q ˙ ≤10), not areas of nearly "complete" dead-space ( V ˙ / Q ˙ >10). CONCLUSIONS: In this early ARDS model, increases in alveolar dead-space occur within 20 hours due to the regional redistribution of perfusion and not ventilation. This moderate redistribution suggests changes in the interplay between active and passive perfusion redistribution mechanisms (including hypoxic vasoconstriction and gravitational effects), not the appearance of thromboembolism. Hence, the association between mortality and increased dead-space possibly arises from the former, reflecting gas-exchange inefficiency due to perfusion heterogeneity. Such heterogeneity results from the injury and exhaustion of compensatory mechanisms for perfusion redistribution.


Assuntos
Síndrome do Desconforto Respiratório , Animais , Pulmão/diagnóstico por imagem , Pressão Parcial , Troca Gasosa Pulmonar , Respiração Artificial , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Ovinos , Relação Ventilação-Perfusão
9.
Sensors (Basel) ; 21(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804448

RESUMO

In this paper, a novel and flexible solution for fault prediction based on data collected from Supervisory Control and Data Acquisition (SCADA) system is presented. Generic fault/status prediction is offered by means of a data driven approach based on a self-organizing map (SOM) and the definition of an original Key Performance Indicator (KPI). The model has been assessed on a park of three photovoltaic (PV) plants with installed capacity up to 10 MW, and on more than sixty inverter modules of three different technology brands. The results indicate that the proposed method is effective in predicting incipient generic faults in average up to 7 days in advance with true positives rate up to 95%. The model is easily deployable for on-line monitoring of anomalies on new PV plants and technologies, requiring only the availability of historical SCADA data, fault taxonomy and inverter electrical datasheet.

10.
Am J Respir Crit Care Med ; 197(10): 1285-1296, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29323536

RESUMO

RATIONALE: In acute respiratory distress syndrome (ARDS), atelectatic solid-like lung tissue impairs transmission of negative swings in pleural pressure (Ppl) that result from diaphragmatic contraction. The localization of more negative Ppl proportionally increases dependent lung stretch by drawing gas either from other lung regions (e.g., nondependent lung [pendelluft]) or from the ventilator. Lowering the level of spontaneous effort and/or converting solid-like to fluid-like lung might render spontaneous effort noninjurious. OBJECTIVES: To determine whether spontaneous effort increases dependent lung injury, and whether such injury would be reduced by recruiting atelectatic solid-like lung with positive end-expiratory pressure (PEEP). METHODS: Established models of severe ARDS (rabbit, pig) were used. Regional histology (rabbit), inflammation (positron emission tomography; pig), regional inspiratory Ppl (intrabronchial balloon manometry), and stretch (electrical impedance tomography; pig) were measured. Respiratory drive was evaluated in 11 patients with ARDS. MEASUREMENTS AND MAIN RESULTS: Although injury during muscle paralysis was predominantly in nondependent and middle lung regions at low (vs. high) PEEP, strong inspiratory effort increased injury (indicated by positron emission tomography and histology) in dependent lung. Stronger effort (vs. muscle paralysis) caused local overstretch and greater tidal recruitment in dependent lung, where more negative Ppl was localized and greater stretch was generated. In contrast, high PEEP minimized lung injury by more uniformly distributing negative Ppl, and lowering the magnitude of spontaneous effort (i.e., deflection in esophageal pressure observed in rabbits, pigs, and patients). CONCLUSIONS: Strong effort increased dependent lung injury, where higher local lung stress and stretch was generated; effort-dependent lung injury was minimized by high PEEP in severe ARDS, which may offset need for paralysis.


Assuntos
Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/terapia , Animais , Modelos Animais de Doenças , Coelhos , Suínos
11.
Anesthesiology ; 129(6): 1070-1081, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260897

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Intraoperative lung-protective ventilation has been recommended to reduce postoperative pulmonary complications after abdominal surgery. Although the protective role of a more physiologic tidal volume has been established, the added protection afforded by positive end-expiratory pressure (PEEP) remains uncertain. The authors hypothesized that a low fixed PEEP might not fit all patients and that an individually titrated PEEP during anesthesia might improve lung function during and after surgery. METHODS: Forty patients were studied in the operating room (20 laparoscopic and 20 open-abdominal). They underwent elective abdominal surgery and were randomized to institutional PEEP (4 cm H2O) or electrical impedance tomography-guided PEEP (applied after recruitment maneuvers and targeted at minimizing lung collapse and hyperdistension, simultaneously). Patients were extubated without changing selected PEEP or fractional inspired oxygen tension while under anesthesia and submitted to chest computed tomography after extubation. Our primary goal was to individually identify the electrical impedance tomography-guided PEEP value producing the best compromise of lung collapse and hyperdistention. RESULTS: Electrical impedance tomography-guided PEEP varied markedly across individuals (median, 12 cm H2O; range, 6 to 16 cm H2O; 95% CI, 10-14). Compared with PEEP of 4 cm H2O, patients randomized to the electrical impedance tomography-guided strategy had less postoperative atelectasis (6.2 ± 4.1 vs. 10.8 ± 7.1% of lung tissue mass; P = 0.017) and lower intraoperative driving pressures (mean values during surgery of 8.0 ± 1.7 vs. 11.6 ± 3.8 cm H2O; P < 0.001). The electrical impedance tomography-guided PEEP arm had higher intraoperative oxygenation (435 ± 62 vs. 266 ± 76 mmHg for laparoscopic group; P < 0.001), while presenting equivalent hemodynamics (mean arterial pressure during surgery of 80 ± 14 vs. 78 ± 15 mmHg; P = 0.821). CONCLUSIONS: PEEP requirements vary widely among patients receiving protective tidal volumes during anesthesia for abdominal surgery. Individualized PEEP settings could reduce postoperative atelectasis (measured by computed tomography) while improving intraoperative oxygenation and driving pressures, causing minimum side effects.


Assuntos
Cuidados Intraoperatórios/métodos , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/prevenção & controle , Medicina de Precisão/métodos , Atelectasia Pulmonar/prevenção & controle , Respiração Artificial/métodos , Abdome/cirurgia , Adulto , Idoso , Anestesia Intravenosa , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Laparoscopia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Respiração com Pressão Positiva/efeitos adversos , Atelectasia Pulmonar/epidemiologia , Atelectasia Pulmonar/etiologia , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar , Tomografia
12.
J Comput Assist Tomogr ; 42(6): 866-872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30371620

RESUMO

OBJECTIVE: The aims of this study were to investigate the ability of contrast-enhanced dual-energy computed tomography (DECT) for assessing regional perfusion in a model of acute lung injury, using dynamic first-pass perfusion CT (DynCT) as the criterion standard and to evaluate if changes in lung perfusion caused by prone ventilation are similarly demonstrated by DECT and DynCT. METHODS: This was an institutional review board-approved study, compliant with guidelines for humane care of laboratory animals. A ventilator-induced lung injury protocol was applied to 6 landrace pigs. Perfused blood volume (PBV) and pulmonary blood flow (PBF) were respectively quantified by DECT and DynCT, in supine and prone positions. The lungs were segmented in equally sized regions of interest, namely, dorsal, middle, and ventral. Perfused blood volume and PBF values were normalized by lung density. Regional air fraction (AF) was assessed by triple-material decomposition DECT. Per-animal correlation between PBV and PBF was assessed with Pearson R. Regional differences in PBV, PBF, and AF were evaluated with 1-way analysis of variance and post hoc linear trend analysis (α = 5%). RESULTS: Mean correlation coefficient between PBV and PBF was 0.70 (range, 0.55-0.98). Higher PBV and PBF values were observed in dorsal versus ventral regions. Dorsal-to-ventral linear trend slopes were -10.24 mL/100 g per zone for PBV (P < 0.001) and -223.0 mL/100 g per minute per zone for PBF (P < 0.001). Prone ventilation also revealed higher PBV and PBF in dorsal versus ventral regions. Dorsal-to-ventral linear trend slopes were -16.16 mL/100 g per zone for PBV (P < 0.001) and -108.2 mL/100 g per minute per zone for PBF (P < 0.001). By contrast, AF was lower in dorsal versus ventral regions in supine position, with dorsal-to-ventral linear trend slope of +5.77%/zone (P < 0.05). Prone ventilation was associated with homogenization of AF distribution among different regions (P = 0.74). CONCLUSIONS: Dual-energy computed tomography PBV is correlated with DynCT-PBF in a model of acute lung injury, and able to demonstrate regional differences in pulmonary perfusion. Perfusion was higher in the dorsal regions, irrespectively to decubitus, with more homogeneous lung aeration in prone position.


Assuntos
Lesão Pulmonar Aguda/diagnóstico por imagem , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Meios de Contraste , Modelos Animais de Doenças , Valor Preditivo dos Testes , Circulação Pulmonar , Suínos
13.
Crit Care Med ; 44(8): e678-88, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27002273

RESUMO

OBJECTIVES: We recently described how spontaneous effort during mechanical ventilation can cause "pendelluft," that is, displacement of gas from nondependent (more recruited) lung to dependent (less recruited) lung during early inspiration. Such transfer depends on the coexistence of more recruited (source) liquid-like lung regions together with less recruited (target) solid-like lung regions. Pendelluft may improve gas exchange, but because of tidal recruitment, it may also contribute to injury. We hypothesize that higher positive end-expiratory pressure levels decrease the propensity to pendelluft and that with lower positive end-expiratory pressure levels, pendelluft is associated with improved gas exchange but increased tidal recruitment. DESIGN: Crossover design. SETTING: University animal research laboratory. SUBJECTS: Anesthetized landrace pigs. INTERVENTIONS: Surfactant depletion was achieved by saline lavage in anesthetized pigs, and ventilator-induced lung injury was produced by ventilation with high tidal volume and low positive end-expiratory pressure. Ventilation was continued in each of four conditions: positive end-expiratory pressure (low or optimized positive end-expiratory pressure after recruitment) and spontaneous breathing (present or absent). Tidal recruitment was assessed using dynamic CT and regional ventilation/perfusion using electric impedance tomography. Esophageal pressure was measured using an esophageal balloon manometer. MEASUREMENTS AND RESULTS: Among the four conditions, spontaneous breathing at low positive end-expiratory pressure not only caused the largest degree of pendelluft, which was associated with improved ventilation/perfusion matching and oxygenation, but also generated the greatest tidal recruitment. At low positive end-expiratory pressure, paralysis worsened oxygenation but reduced tidal recruitment. Optimized positive end-expiratory pressure decreased the magnitude of spontaneous efforts (measured by esophageal pressure) despite using less sedation, from -5.6 ± 1.3 to -2.0 ± 0.7 cm H2O, while concomitantly reducing pendelluft and tidal recruitment. No pendelluft was observed in the absence of spontaneous effort. CONCLUSIONS: Spontaneous effort at low positive end-expiratory pressure improved oxygenation but promoted tidal recruitment associated with pendelluft. Optimized positive end-expiratory pressure (set after lung recruitment) may reverse the harmful effects of spontaneous breathing by reducing inspiratory effort, pendelluft, and tidal recruitment.


Assuntos
Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Lesão Pulmonar Induzida por Ventilação Mecânica/epidemiologia , Animais , Feminino , Pulmão/fisiopatologia , Respiração com Pressão Positiva/métodos , Troca Gasosa Pulmonar/fisiologia , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório , Mecânica Respiratória/fisiologia , Suínos , Volume de Ventilação Pulmonar
14.
Crit Care Med ; 44(1): 32-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26672923

RESUMO

OBJECTIVE: The open lung approach is a mechanical ventilation strategy involving lung recruitment and a decremental positive end-expiratory pressure trial. We compared the Acute Respiratory Distress Syndrome network protocol using low levels of positive end-expiratory pressure with open lung approach resulting in moderate to high levels of positive end-expiratory pressure for the management of established moderate/severe acute respiratory distress syndrome. DESIGN: A prospective, multicenter, pilot, randomized controlled trial. SETTING: A network of 20 multidisciplinary ICUs. PATIENTS: Patients meeting the American-European Consensus Conference definition for acute respiratory distress syndrome were considered for the study. INTERVENTIONS: At 12-36 hours after acute respiratory distress syndrome onset, patients were assessed under standardized ventilator settings (FIO2≥0.5, positive end-expiratory pressure ≥10 cm H2O). If Pao2/FIO2 ratio remained less than or equal to 200 mm Hg, patients were randomized to open lung approach or Acute Respiratory Distress Syndrome network protocol. All patients were ventilated with a tidal volume of 4 to 8 ml/kg predicted body weight. MEASUREMENTS AND MAIN RESULTS: From 1,874 screened patients with acute respiratory distress syndrome, 200 were randomized: 99 to open lung approach and 101 to Acute Respiratory Distress Syndrome network protocol. Main outcome measures were 60-day and ICU mortalities, and ventilator-free days. Mortality at day-60 (29% open lung approach vs. 33% Acute Respiratory Distress Syndrome Network protocol, p = 0.18, log rank test), ICU mortality (25% open lung approach vs. 30% Acute Respiratory Distress Syndrome network protocol, p = 0.53 Fisher's exact test), and ventilator-free days (8 [0-20] open lung approach vs. 7 [0-20] d Acute Respiratory Distress Syndrome network protocol, p = 0.53 Wilcoxon rank test) were not significantly different. Airway driving pressure (plateau pressure - positive end-expiratory pressure) and PaO2/FIO2 improved significantly at 24, 48 and 72 hours in patients in open lung approach compared with patients in Acute Respiratory Distress Syndrome network protocol. Barotrauma rate was similar in both groups. CONCLUSIONS: In patients with established acute respiratory distress syndrome, open lung approach improved oxygenation and driving pressure, without detrimental effects on mortality, ventilator-free days, or barotrauma. This pilot study supports the need for a large, multicenter trial using recruitment maneuvers and a decremental positive end-expiratory pressure trial in persistent acute respiratory distress syndrome.


Assuntos
Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Síndrome do Desconforto Respiratório/mortalidade , Fatores de Tempo
15.
Anesthesiology ; 125(5): 992-1004, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27611185

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is an inflammatory condition comprising diffuse lung edema and alveolar damage. ARDS frequently results from regional injury mechanisms. However, it is unknown whether detectable inflammation precedes lung edema and opacification and whether topographically differential gene expression consistent with heterogeneous injury occurs in early ARDS. The authors aimed to determine the temporal relationship between pulmonary metabolic activation and density in a large animal model of early ARDS and to assess gene expression in differentially activated regions. METHODS: The authors produced ARDS in sheep with intravenous lipopolysaccharide (10 ng ⋅ kg ⋅ h) and mechanical ventilation for 20 h. Using positron emission tomography, the authors assessed regional cellular metabolic activation with 2-deoxy-2-[(18)F]fluoro-D-glucose, perfusion and ventilation with NN-saline, and aeration using transmission scans. Species-specific microarray technology was used to assess regional gene expression. RESULTS: Metabolic activation preceded detectable increases in lung density (as required for clinical diagnosis) and correlated with subsequent histologic injury, suggesting its predictive value for severity of disease progression. Local time courses of metabolic activation varied, with highly perfused and less aerated dependent lung regions activated earlier than nondependent regions. These regions of distinct metabolic trajectories demonstrated differential gene expression for known and potential novel candidates for ARDS pathogenesis. CONCLUSIONS: Heterogeneous lung metabolic activation precedes increases in lung density in the development of ARDS due to endotoxemia and mechanical ventilation. Local differential gene expression occurs in these early stages and reveals molecular pathways relevant to ARDS biology and of potential use as treatment targets.


Assuntos
Expressão Gênica , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/fisiopatologia , Ativação Metabólica , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Pulmão/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Ovinos
17.
Am J Respir Crit Care Med ; 188(12): 1420-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24199628

RESUMO

RATIONALE: In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical ventilation. OBJECTIVES: To test the hypotheses that in injured lungs negative P(pl) generated by diaphragm contraction has localized effects (in dependent regions) that are not uniformly transmitted, and that such localized changes in P(pl) cause pendelluft. METHODS: We used electrical impedance tomography and dynamic computed tomography (CT) to analyze regional inflation in anesthetized pigs with lung injury. Changes in local P(pl) were measured in nondependent versus dependent regions using intrabronchial balloon catheters. The airway pressure needed to achieve comparable dependent lung inflation during paralysis versus spontaneous breathing was estimated. MEASUREMENTS AND MAIN RESULTS: In all animals, spontaneous breathing caused pendelluft during early inflation, which was associated with more negative local P(pl) in dependent regions versus nondependent regions (-13.0 ± 4.0 vs. -6.4 ± 3.8 cm H2O; P < 0.05). Dynamic CT confirmed pendelluft, which occurred despite limitation of tidal volume to less than 6 ml/kg. Comparable inflation of dependent lung during paralysis required almost threefold greater driving pressure (and tidal volume) versus spontaneous breathing (28.0 ± 0.5 vs. 10.3 ± 0.6 cm H2O, P < 0.01; 14.8 ± 4.6 vs. 5.8 ± 1.6 ml/kg, P < 0.05). CONCLUSIONS: Spontaneous breathing effort during mechanical ventilation causes unsuspected overstretch of dependent lung during early inflation (associated with reciprocal deflation of nondependent lung). Even when not increasing tidal volume, strong spontaneous effort may potentially enhance lung damage.


Assuntos
Pulmão/fisiopatologia , Pleura/fisiopatologia , Respiração com Pressão Positiva , Pressão , Respiração , Síndrome do Desconforto Respiratório/fisiopatologia , Adulto , Animais , Humanos , Masculino , Pletismografia de Impedância , Síndrome do Desconforto Respiratório/terapia , Suínos , Volume de Ventilação Pulmonar , Tomografia
18.
Sci Rep ; 14(1): 5832, 2024 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461172

RESUMO

Regional pulmonary perfusion (Q) has been investigated using blood volume (Fb) imaging as an easier-to-measure surrogate. However, it is unclear if changing pulmonary conditions could affect their relationship. We hypothesized that vascular changes in early acute respiratory distress syndrome (ARDS) affect Q and Fb differently. Five sheep were anesthetized and received lung protective mechanical ventilation for 20 h while endotoxin was continuously infused. Using dynamic 18F-FDG and 13NN Positron Emission Tomography (PET), regional Fb and Q were analysed in 30 regions of interest (ROIs) and normalized by tissue content (Fbn and Qn, respectively). After 20 h, the lung injury showed characteristics of early ARDS, including gas exchange and lung mechanics. PET images of Fbn and Qn showed substantial differences between baseline and lung injury. Lung injury caused a significant change in the Fbn-Qn relationship compared to baseline (p < 0.001). The best models at baseline and lung injury were Fbn = 0.32 + 0.690Qn and Fbn = 1.684Qn-0.538Qn2, respectively. Endotoxine-associated early ARDS changed the relationship between Fb and Q, shifting from linear to curvilinear. Effects of endotoxin exposure on the vasoactive blood flow regulation were most likely the key factor for this change limiting the quantitative accuracy of Fb imaging as a surrogate for regional Q.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Ovinos , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Perfusão , Volume Sanguíneo , Endotoxinas/toxicidade
19.
Ann Intensive Care ; 14(1): 85, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849605

RESUMO

BACKGROUND: Protective ventilation seems crucial during early Acute Respiratory Distress Syndrome (ARDS), but the optimal duration of lung protection remains undefined. High driving pressures (ΔP) and excessive patient ventilatory drive may hinder lung recovery, resulting in self-inflicted lung injury. The hidden nature of the ΔP generated by patient effort complicates the situation further. Our study aimed to assess the feasibility of an extended lung protection strategy that includes a stepwise protocol to control the patient ventilatory drive, assessing its impact on lung recovery. METHODS: We conducted a single-center randomized study on patients with moderate/severe COVID-19-ARDS with low respiratory system compliance (CRS < 0.6 (mL/Kg)/cmH2O). The intervention group received a ventilation strategy guided by Electrical Impedance Tomography aimed at minimizing ΔP and patient ventilatory drive. The control group received the ARDSNet low-PEEP strategy. The primary outcome was the modified lung injury score (mLIS), a composite measure that integrated daily measurements of CRS, along with oxygen requirements, oxygenation, and X-rays up to day 28. The mLIS score was also hierarchically adjusted for survival and extubation rates. RESULTS: The study ended prematurely after three consecutive months without patient enrollment, attributed to the pandemic subsiding. The intention-to-treat analysis included 76 patients, with 37 randomized to the intervention group. The average mLIS score up to 28 days was not different between groups (P = 0.95, primary outcome). However, the intervention group showed a faster improvement in the mLIS (1.4 vs. 7.2 days to reach 63% of maximum improvement; P < 0.001), driven by oxygenation and sustained improvement of X-ray (P = 0.001). The intervention group demonstrated a sustained increase in CRS up to day 28 (P = 0.009) and also experienced a shorter time from randomization to room-air breathing (P = 0.02). Survival at 28 days and time until liberation from the ventilator were not different between groups. CONCLUSIONS: The implementation of an individualized PEEP strategy alongside extended lung protection appears viable. Promising secondary outcomes suggested a faster lung recovery, endorsing further examination of this strategy in a larger trial. Clinical trial registration This trial was registered with ClinicalTrials.gov (number NCT04497454) on August 04, 2020.

20.
Anesthesiology ; 119(1): 156-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23535501

RESUMO

BACKGROUND: Lung derecruitment is common during general anesthesia. Mechanical ventilation with physiological tidal volumes could magnify derecruitment, and produce lung dysfunction and inflammation. The authors used positron emission tomography to study the process of derecruitment in normal lungs ventilated for 16 h and the corresponding changes in regional lung perfusion and inflammation. METHODS: Six anesthetized supine sheep were ventilated with VT=8 ml/kg and positive end-expiratory pressure=0. Transmission scans were performed at 2-h intervals to assess regional aeration. Emission scans were acquired at baseline and after 16 h for the following tracers: (1) F-fluorodeoxyglucose to evaluate lung inflammation and (2) NN to calculate regional perfusion and shunt fraction. RESULTS: Gas fraction decreased from baseline to 16 h in dorsal (0.31±0.13 to 0.14±0.12, P<0.01), but not in ventral regions (0.61±0.03 to 0.63±0.07, P=nonsignificant), with time constants of 1.5-44.6 h. Although the vertical distribution of relative perfusion did not change from baseline to 16 h, shunt increased in dorsal regions (0.34±0.23 to 0.63±0.35, P<0.01). The average pulmonary net F-fluorodeoxyglucose uptake rate in six regions of interest along the ventral-dorsal direction increased from 3.4±1.4 at baseline to 4.1±1.5 10(-3)/min after 16 h (P<0.01), and the corresponding average regions of interest F-fluorodeoxyglucose phosphorylation rate increased from 2.0±0.2 to 2.5±0.2 10(-2)/min (P<0.01). CONCLUSIONS: When normal lungs are mechanically ventilated without positive end-expiratory pressure, loss of aeration occurs continuously for several hours and is preferentially localized to dorsal regions. Progressive lung derecruitment was associated with increased regional shunt, implying an insufficient hypoxic pulmonary vasoconstriction. The increased pulmonary net uptake and phosphorylation rates of F-fluorodeoxyglucose suggest an incipient inflammation in these initially normal lungs.


Assuntos
Pulmão/fisiologia , Pneumonia/patologia , Respiração Artificial , Ovinos/fisiologia , Decúbito Dorsal/fisiologia , Animais , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Contagem de Leucócitos , Pulmão/citologia , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar , Neutrófilos/patologia , Radioisótopos de Nitrogênio , Pneumonia/diagnóstico por imagem , Respiração com Pressão Positiva , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa