Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(23): 38206-38220, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808878

RESUMO

In imaging geometries, which employ wavefront-shaping to control the light transport through a multi-mode optical fibre (MMF), this terminal hair-thin optical component acts as a minimally invasive objective lens, enabling high resolution laser-scanning fluorescence microscopy inside living tissues at depths hardly accessible by any other light-based technique. Even in the most advanced systems, the diffraction-limited foci scanning the object across the focal plane are contaminated by a stray optical signal carrying typically few tens of % of the total optical power. The stray illumination takes the shape of a randomised but reproducible speckle, and is unique for each position of the focus. We experimentally demonstrate that the performance of imaging a fluorescent object can be significantly improved, when resulting images are computationally post-processed, utilising records of intensities of all speckle-contaminated foci used in the imaging procedure. We present two algorithms based on a regularised iterative inversion and regularised direct pseudo-inversion respectively which lead to enhancement of the image contrast and resolution.

2.
Nat Commun ; 14(1): 1897, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019883

RESUMO

Light-based in-vivo brain imaging relies on light transport over large distances of highly scattering tissues. Scattering gradually reduces imaging contrast and resolution, making it difficult to reach structures at greater depths even with the use of multiphoton techniques. To reach deeper, minimally invasive endo-microscopy techniques have been established. These most commonly exploit graded-index rod lenses and enable a variety of modalities in head-fixed and freely moving animals. A recently proposed alternative is the use of holographic control of light transport through multimode optical fibres promising much less traumatic application and superior imaging performance. We present a 110 µm thin laser-scanning endo-microscope based on this prospect, enabling in-vivo volumetric imaging throughout the whole depth of the mouse brain. The instrument is equipped with multi-wavelength detection and three-dimensional random access options, and it performs at lateral resolution below 1 µm. We showcase various modes of its application through the observations of fluorescently labelled neurones, their processes and blood vessels. Finally, we demonstrate how to exploit the instrument to monitor calcium signalling of neurones and to measure blood flow velocity in individual vessels at high speeds.


Assuntos
Encéfalo , Cabeça , Camundongos , Animais , Microscopia Confocal , Velocidade do Fluxo Sanguíneo , Neurônios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa