Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Mater Sci Mater Med ; 33(6): 54, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35691951

RESUMO

Particles released from cobalt-chromium-molybdenum (CoCrMo) alloys are considered common elicitors of chronic inflammatory adverse effects. There is a lack of data demonstrating particle numbers, size distribution and elemental composition of bone marrow resident particles which would allow for implementation of clinically relevant test strategies in bone marrow models at different degrees of exposure. The aim of this study was to investigate metal particle exposure in human periprosthetic bone marrow of three types of arthroplasty implants. Periprosthetic bone marrow sections from eight patients exposed to CoCrMo particles were analyzed via spatially resolved and synchrotron-based nanoscopic X-ray fluorescence imaging. These analyses revealed lognormal particle size distribution patterns predominantly towards the nanoscale. Analyses of particle numbers and normalization to bone marrow volume and bone marrow cell number indicated particle concentrations of up to 1 × 1011 particles/ml bone marrow or 2 × 104 particles/bone marrow cell, respectively. Analyses of elemental ratios of CoCrMo particles showed that particularly the particles' Co content depends on particle size. The obtained data point towards Co release from arthroprosthetic particles in the course of dealloying and degradation processes of larger particles within periprosthetic bone marrow. This is the first study providing data based on metal particle analyses to be used for future in vitro and in vivo studies of possible toxic effects in human bone marrow following exposure to arthroprosthetic CoCrMo particles of different concentration, size, and elemental composition. Graphical abstract.


Assuntos
Cobalto , Molibdênio , Ligas , Medula Óssea , Cromo , Humanos , Metais , Síncrotrons , Vitálio
2.
J Struct Biol ; 213(3): 107766, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216761

RESUMO

Metals are essential for life and their concentration and distribution in organisms are tightly regulated. Indeed, in their free form, most transition metal ions are toxic. Therefore, an excess of physiologic metal ions or the uptake of non-physiologic metal ions can be highly detrimental to the organism. It is thus fundamental to understand metal distribution under physiological, pathological or environmental conditions, for instance in metal-related pathologies or upon environmental exposure to metals. Elemental imaging techniques can serve this purpose, by allowing the visualization and the quantification of metal species in tissues down to the level of cell organelles. Synchrotron radiation-based X-ray fluorescence (SR-XRF) microscopy is one of the most sensitive techniques to date, and great progress was made to reach nanoscale spatial resolution. Here we propose a correlative method to couple SR-XRF to electron microscopy (EM), with the possibility to quantify selected elemental contents in a specific organelle of interest with 50 × 50 nm2 raster scan resolution. We performed EM and SR-XRF on the same section of hepatocytes exposed to silver nanoparticles, in order to identify mitochondria through EM and visualize Ag co-localized with these organelles through SR-XRF. We demonstrate the accumulation of silver in mitochondria, which can reach a 10-fold higher silver concentration compared to the surrounding cytosol. The sample preparation and experimental setup can be adapted to other scientific questions, making the correlative use of SR-XRF and EM suitable to address a large panel of biological questions related to metal homeostasis.


Assuntos
Nanopartículas Metálicas , Oligoelementos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência/métodos , Organelas , Prata , Espectrometria por Raios X/métodos , Raios X
3.
Environ Microbiol ; 23(11): 6569-6586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34499794

RESUMO

Photosymbiosis is widespread and ecologically important in the oceanic plankton but remains poorly studied. Here, we used multimodal subcellular imaging to investigate the photosymbiosis between colonial Collodaria and their microalga dinoflagellate (Brandtodinium). We showed that this symbiosis is very dynamic whereby symbionts interact with different host cells via extracellular vesicles within the colony. 3D electron microscopy revealed that the photosynthetic apparatus of the microalgae was more voluminous in symbiosis compared to free-living while the mitochondria volume was similar. Stable isotope probing coupled with NanoSIMS showed that carbon and nitrogen were stored in the symbiotic microalga in starch granules and purine crystals respectively. Nitrogen was also allocated to the algal nucleolus. In the host, low 13 C transfer was detected in the Golgi. Metal mapping revealed that intracellular iron concentration was similar in free-living and symbiotic microalgae (c. 40 ppm) and twofold higher in the host, whereas copper concentration increased in symbionts and was detected in the host cell and extracellular vesicles. Sulfur concentration was around two times higher in symbionts (chromatin and pyrenoid) than their host. This study improves our understanding on the functioning of this oceanic photosymbiosis and paves the way for more studies to further assess its biogeochemical significance.


Assuntos
Dinoflagellida , Microalgas , Fotossíntese , Plâncton , Simbiose
4.
Opt Express ; 29(7): 10000-10035, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820138

RESUMO

We describe and demonstrate an optimization-based X-ray image reconstruction framework called Adorym. Our framework provides a generic forward model, allowing one code framework to be used for a wide range of imaging methods ranging from near-field holography to fly-scan ptychographic tomography. By using automatic differentiation for optimization, Adorym has the flexibility to refine experimental parameters including probe positions, multiple hologram alignment, and object tilts. It is written with strong support for parallel processing, allowing large datasets to be processed on high-performance computing systems. We demonstrate its use on several experimental datasets to show improved image quality through parameter refinement.

5.
J Synchrotron Radiat ; 27(Pt 4): 1074-1079, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566018

RESUMO

A helium mini-cryostat has been developed for the hard X-ray nanoprobe ID16B of the European Synchrotron to collect X-ray excited optical luminescence and X-ray fluorescence at low temperature (<10 K). The mini-cryostat has been specifically designed to fit within the strong space restrictions and high-demanding mechanical constraints imposed by the beamline to provide vibration-free operation and maximal thermal stability. This paper reports the detailed design, architecture and technical requirements of the mini-cryostat, and presents the first experimental data measured using the cryogenic equipment. The resulting cryo-system features ultimate thermal stability, fast cool-down and ultra-low vibrations. The simultaneous X-ray fluorescence and X-ray excited optical luminescence data acquired from bulk GaN and core/shell InGaN/GaN multi-quantum wells validated the excellent performance of the cryostat with ultimate resolution, stability and sensitivity.

6.
Part Fibre Toxicol ; 16(1): 33, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31451117

RESUMO

BACKGROUND: Allergic reactions to tattoos are amongst the most common side effects occurring with this permanent deposition of pigments into the dermal skin layer. The characterization of such pigments and their distribution has been investigated in recent decades. The health impact of tattoo equipment on the extensive number of people with inked skin has been the focus of neither research nor medical diagnostics. Although tattoo needles contain high amounts of sensitizing elements like nickel (Ni) and chromium (Cr), their influence on metal deposition in skin has never been investigated. RESULTS: Here, we report the deposition of nano- and micrometer sized tattoo needle wear particles in human skin that translocate to lymph nodes. Usually tattoo needles contain nickel (6-8%) and chromium (15-20%) both of which prompt a high rate of sensitization in the general population. As verified in pig skin, wear significantly increased upon tattooing with the suspected abrasive titanium dioxide white when compared to carbon black pigment. Additionally, scanning electron microscopy of the tattoo needle revealed a high wear after tattooing with ink containing titanium dioxide. The investigation of a skin biopsy obtained from a nickel sensitized patient with type IV allergy toward a tattoo showed both wear particles and iron pigments contaminated with nickel. CONCLUSION: Previously, the virtually inevitable nickel contamination of iron pigments was suspected to be responsible for nickel-driven tattoo allergies. The evidence from our study clearly points to an additional entry of nickel to both skin and lymph nodes originating from tattoo needle wear with an as yet to be assessed impact on tattoo allergy formation and systemic sensitization.


Assuntos
Cromo/farmacocinética , Corantes/toxicidade , Hipersensibilidade/etiologia , Linfonodos/efeitos dos fármacos , Níquel/farmacocinética , Pele/efeitos dos fármacos , Tatuagem/efeitos adversos , Animais , Corantes/farmacocinética , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Técnicas In Vitro , Tinta , Linfonodos/imunologia , Linfonodos/metabolismo , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Agulhas , Tamanho da Partícula , Pele/imunologia , Pele/metabolismo , Suínos , Distribuição Tecidual , Titânio/farmacocinética , Titânio/toxicidade
7.
Anal Chem ; 89(21): 11435-11442, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28994576

RESUMO

Synchrotron radiation phase-contrast computed nanotomography (nano-CT) and two- and three-dimensional (2D and 3D) nanoscopic X-ray fluorescence (nano-XRF) were used to investigate the internal distribution of engineered cobalt nanoparticles (Co NPs) in exposed individuals of the nematode Caenorhabditis elegans. Whole nematodes and selected tissues and organs were 3D-rendered: anatomical 3D renderings with 50 nm voxel size enabled the visualization of spherical nanoparticle aggregates with size up to 200 nm within intact C. elegans. A 20 × 37 nm2 high-brilliance beam was employed to obtain XRF elemental distribution maps of entire nematodes or anatomical details such as embryos, which could be compared with the CT data. These maps showed Co NPs to be predominantly present within the intestine and the epithelium, and they were not colocalized with Zn granules found in the lysosome-containing vesicles or Fe agglomerates in the intestine. Iterated XRF scanning of a specimen at 0° and 90° angles suggested that NP aggregates were translocated into tissues outside of the intestinal lumen. Virtual slicing by means of 2D XRF tomography, combined with holotomography, indicated presumable presence of individual NP aggregates inside the uterus and within embryos.


Assuntos
Caenorhabditis elegans/metabolismo , Cobalto/química , Cobalto/metabolismo , Nanopartículas Metálicas , Nanotecnologia , Imagem Óptica , Tomografia Computadorizada por Raios X , Animais , Engenharia , Imageamento Tridimensional , Raios X
8.
J Synchrotron Radiat ; 23(1): 344-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698084

RESUMO

Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5-70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results.

9.
Environ Sci Technol ; 50(19): 10721-10729, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27676331

RESUMO

Humans are contaminated by mercury in different forms from different sources. In practice, contamination by methylmercury from fish consumption is assessed by measuring hair mercury concentration, whereas exposure to elemental and inorganic mercury from other sources is tested by analysis of blood or urine. Here, we show that diverse sources of hair mercury at concentrations as low as 0.5 ppm can be individually identified by specific coordination to C, N, and S ligands with high energy-resolution X-ray absorption spectroscopy. Methylmercury from seafood, ethylmercury used as a bactericide, inorganic mercury from dental amalgams, and exogenously derived atmospheric mercury bind in distinctive intermolecular configurations to hair proteins, as supported by molecular modeling. A mercury spike located by X-ray nanofluorescence on one hair strand could even be dated to removal of a single dental amalgam. Chemical forms of other known or putative toxic metals in human tissues could be identified by this approach with potential broader applications to forensic, energy, and materials science.


Assuntos
Monitoramento Ambiental , Mercúrio , Animais , Peixes/metabolismo , Contaminação de Alimentos , Cabelo/química , Humanos , Compostos de Metilmercúrio , Alimentos Marinhos
10.
Nano Lett ; 14(10): 5479-87, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25181032

RESUMO

Crossed nanowire structures are the basis for high-density integration of a variety of nanodevices. Owing to the critical role of nanowires intersections in creating hybrid architectures, it has become a challenge to investigate the local structure in crossing points in metal oxide nanowires. Thus, if intentionally grown crossed nanowires are well-patterned, an ideal model to study the junction is formed. By combining electron and synchrotron beam nanoprobes, we show here experimental evidence of the role of impurities in the coupling formation, structural modifications, and atomic site configuration based on crossed Ga2O3/SnO2 nanowires. Our experiment opens new avenues for further local structure studies with both nanometer resolution and elemental sensitivity.

11.
Anal Chem ; 86(24): 12369-74, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25395119

RESUMO

The new ESRF ID16B-NA Nanoanalysis beamline has been applied for the first time for XRF imaging with a resolution level down to a few tens of nanometers on rare geological materials: meteoritic fragments from achondrite NWA 6693 and diamond inclusions. The instrument proved to be an extremely valuable tool for mapping samples containing submicrometer heterogeneities. It was discovered that the track of bubblelike inclusions in NWA 6693 consists mainly of Cr-rich phases. Some inclusions containing Ni and Ca were also detected. In diamond SL05, originating from the Juina region in Brazil, multiple inclusions were analyzed with dimensions smaller than 1 µm. Raman spectrometry measurements indicated the presence of a ringwoodite inclusion in this diamond; the detection of several iron-rich inclusions justifies further investigation of this material.

12.
Nat Commun ; 14(1): 7833, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030620

RESUMO

Controlling the selectivity of the electrocatalytic reduction of carbon dioxide into value-added chemicals continues to be a major challenge. Bulk and surface lattice strain in nanostructured electrocatalysts affect catalytic activity and selectivity. Here, we unravel the complex dynamics of synergistic lattice strain and stability effects of Cu-Ag tandem catalysts through a previously unexplored combination of in situ nanofocused X-ray absorption spectroscopy and Bragg coherent diffraction imaging. Three-dimensional strain maps reveal the lattice dynamics inside individual nanoparticles as a function of applied potential and product yields. Dynamic relations between strain, redox state, catalytic activity and selectivity are derived. Moderate Ag contents effectively reduce the competing evolution of H2 and, concomitantly, lead to an enhanced corrosion stability. Findings from this study evidence the power of advanced nanofocused spectroscopy techniques to provide new insights into the chemistry and structure of nanostructured catalysts.

13.
J Synchrotron Radiat ; 19(Pt 1): 10-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186639

RESUMO

The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.


Assuntos
Síncrotrons/instrumentação , Arsenitos/análise , Núcleo Celular/química , Citosol/química , Dano ao DNA/efeitos dos fármacos , Microanálise por Sonda Eletrônica , Complexo de Golgi/fisiologia , Células Hep G2 , Humanos , Manganês/metabolismo , Mitocôndrias/química , Nanopartículas/uso terapêutico , Espectrometria por Raios X/métodos , Espectroscopia por Absorção de Raios X/métodos , Raios X
14.
J Struct Biol ; 173(2): 202-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20950687

RESUMO

We report elemental mappings on the sub-cellular level of myelinated sciatic neurons isolated from wild type mice, with high spatial resolution. The distribution of P, S, Cl, Na, K, Fe, Mn, Cu was imaged in freeze-dried as well as cryo-preserved specimen, using the recently developed cryogenic sample environment at beamline ID21 at the European Synchrotron Radiation Facility (ESRF). In addition, synchrotron radiation based Fourier transform infrared (FTIR) spectromicroscopy was used as a chemically sensitive imaging method. Finally single fiber diffraction in highly focused hard X-ray beams, and soft X-ray microscopy and tomography in absorption contrast are demonstrated as novel techniques for the study of single nerve fibers.


Assuntos
Bainha de Mielina/química , Animais , Camundongos , Microscopia , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Bainha de Mielina/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Tomografia Computadorizada por Raios X , Raios X
15.
Environ Sci Technol ; 45(18): 7826-33, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21819094

RESUMO

Synchrotron radiation-induced micro-X-ray analysis were applied to characterize the newly formed phases that precipitate in a passive treatment system using magnesium oxide to remove high concentrations of zinc (ca. 440 mg/L) and other minor metals from neutral pretreated waters in the Iberian Pyrite Belt (SW Iberian Peninsula). Micro-X-ray fluorescence (µ-XRF) maps of polished samples were used to find spatial correlations among metals, pinpointing zones of interest where micro-X-ray diffraction (µ-XRD) data were exploited to identify the mineral phases responsible for metal retention. This coupled technique identified hydrozincite (Zn(5)(CO(3))(2)(OH)(6)) and minor loseyite ((Mn,Zn)(7)(CO(3))(2)(OH)(10)) as the mineral sinks for Zn and also other potentially toxic elements such as Co and Ni. Although hydrozincite retains traces of Mn, this metal is mainly retained by precipitation of loseyite. The precipitation of zinc hydroxy-carbonates and their ability to uptake other metals (Mn, Co, and Ni) is hence of potential interest not only for the treatment of contaminated waters but also for the generation of a solid waste that could be exploited as a new Zn economic resource.


Assuntos
Resíduos Industriais/análise , Óxido de Magnésio/química , Metais/química , Mineração , Eliminação de Resíduos Líquidos/métodos , Compostos de Zinco/química , Precipitação Química , Metais/análise , Silício/análise , Espectrometria por Raios X , Síncrotrons , Difração de Raios X
16.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34261651

RESUMO

Subsurface habitats on Earth host an extensive extant biosphere and likely provided one of Earth's earliest microbial habitats. Although the site of life's emergence continues to be debated, evidence of early life provides insights into its early evolution and metabolic affinity. Here, we present the discovery of exceptionally well-preserved, ~3.42-billion-year-old putative filamentous microfossils that inhabited a paleo-subseafloor hydrothermal vein system of the Barberton greenstone belt in South Africa. The filaments colonized the walls of conduits created by low-temperature hydrothermal fluid. Combined with their morphological and chemical characteristics as investigated over a range of scales, they can be considered the oldest methanogens and/or methanotrophs that thrived in an ultramafic volcanic substrate.

17.
Front Microbiol ; 11: 584715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154741

RESUMO

Microorganisms are key players in the transformation of mercury into neurotoxic methylmercury (MeHg). Nevertheless, this mechanism and the opposite MeHg demethylation remain poorly understood. Here, we explored the impact of inorganic mercury (IHg) and MeHg concentrations from 0.05 to 50 µM on the production and degradation of MeHg in two sulfate-reducing bacteria, Pseudodesulfovibrio hydrargyri BerOc1 able to methylate and demethylate mercury and Desulfovibrio desulfuricans G200 only able to demethylate MeHg. MeHg produced by BerOc1 increased with increasing IHg concentration with a maximum attained for 5 µM, and suggested a saturation of the process. MeHg was mainly found in the supernatant suggesting its export from the cell. Hg L3-edge High- Energy-Resolution-Fluorescence-Detected-X-ray-Absorption-Near-Edge-Structure spectroscopy (HERFD-XANES) identified MeHg produced by BerOc1 as MeHg-cysteine2 form. A dominant tetracoordinated ßHgS form was detected for BerOc1 exposed to the lowest IHg concentrations where methylation was detected. In contrast, at the highest exposure (50 µM) where Hg methylation was abolished, Hg species drastically changed suggesting a role of Hg speciation in the production of MeHg. The tetracoordinated ßHgS was likely present as nano-particles as suggested by transmission electron microscopy combined to X-ray energy dispersive spectroscopy (TEM-X-EDS) and nano-X ray fluorescence (nano-XRF). When exposed to MeHg, the production of IHg, on the contrary, increased with the increase of MeHg exposure until 50 µM for both BerOc1 and G200 strains, suggesting that demethylation did not require intact biological activity. The formed IHg species were identified as various tetracoordinated Hg-S forms. These results highlight the important role of thiol ligands and Hg coordination in Hg methylation and demethylation processes.

18.
Adv Sci (Weinh) ; 7(20): 2000412, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101844

RESUMO

Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.

19.
Trends Cell Biol ; 30(3): 173-188, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31987730

RESUMO

To better understand the physiology and acclimation capability of the cell, one of the great challenges of the future is to access the interior of a cell and unveil its chemical landscape (composition and distribution of elements and molecules). Chemical imaging has greatly improved in sensitivity and spatial resolution to visualize and quantify nutrients, metabolites, toxic elements, and drugs in single cells at the subcellular level. This review aims to present the current potential of these emerging imaging technologies and to guide biologists towards a strategy for interrogating biological processes at the nanoscale. We also describe various solutions to combine multiple imaging techniques in a correlative way and provide perspectives and future directions for integrative subcellular imaging across different disciplines.


Assuntos
Biologia Celular , Células/química , Imageamento Tridimensional , Animais , Humanos , Imagem Multimodal , Frações Subcelulares/metabolismo
20.
Biochem Biophys Res Commun ; 380(1): 198-203, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19171119

RESUMO

Zinc serves regulatory functions in cells and thus, several mechanisms exist for tight control of its homeostasis. One mechanism is storage in and retrieval from vesicles, so-called zincosomes, but the chemical speciation of zincosomal zinc has remained enigmatic. Here, we determine the intravesicular zinc-coordination in isolated zincosomes in comparison to intact RAW264.7 murine macrophage cells. In elemental maps of a cell monolayer, generated by microbeam X-ray fluorescence, zincosomes were identified as spots of high zinc accumulation. A fingerprint for the binding motif obtained by muXANES (X-ray absorption near edge structure) matches the XANES from isolated vesicles; zinc is not free, but present as a complexed form (average coordination; 1.0 sulfur, 2,5 histidines 30 and 1.0 oxygen), resembling regulatory or catalytic zinc sites in proteins. Such coordination enables reversible binding, acting as a 'zinc sink', facilitating the accumulation of high amounts of zinc against a concentration gradient.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Zinco/metabolismo , Animais , Linhagem Celular , Ligantes , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa