Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 215(2): 107966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100101

RESUMO

Cortisol is a steroid hormone that is produced by the adrenal gland. It is a primary stress hormone that increases glucose levels in the blood stream. High concentrations of cortisol in the body can be used as a biomarker for acute and chronic stress and related mental and physiological disorders. Therefore, the accurate quantification of cortisol levels in body fluids is essential for clinical diagnosis. In this article, we describe the isolation of recombinant anti-cortisol antibodies with high affinity for cortisol and discover their cross-reactivity with other glucocorticoids. To describe the cortisol binding site and elucidate the structural basis for the binding specificity, the high-resolution crystal structures of the anti-cortisol (17) Fab fragment in the absence of glucocorticoid (2.00 Å) and the presence of cortisol (2.26 Å), corticosterone (1.86 Å), cortisone (1.85 Å) and prednisolone (2.00 Å) were determined. To our knowledge, this is the first determined crystal structure of a cortisol-specific antibody. The recognition of cortisol is driven by hydrophobic interactions and hydrogen bonding at the protein-ligand interface coupled with a conformational transition. Comparison of ligand-free and ligand-bound structures showed that the side chains of residues Tyr58-H and Arg56-H can undergo local conformational changes at the binding site, most likely prior to the binding event via a conformational selection mechanism. Compared to other anti-steroid antibody-antigen complexes, (17) Fab possesses a structurally unique steroid binding site, as the H3 loop from the CDR area has only a minor contribution, but framework residues have a prominent contribution to hapten binding.


Assuntos
Glucocorticoides , Fragmentos Fab das Imunoglobulinas , Fragmentos Fab das Imunoglobulinas/química , Sequência de Aminoácidos , Hidrocortisona , Modelos Moleculares , Cristalografia por Raios X , Conformação Proteica
2.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561803

RESUMO

Phage display technology provides a powerful tool for the development of novel recombinant antibodies. In this work, we optimized and streamlined the recombinant antibody discovery process for haptens as an example. A multi-immunization approach was used in order to avoid the need for construction of multiple antibody libraries. Selection methods were developed to utilize the full potential of the recombinant antibody library by applying four different elution conditions simultaneously. High-throughput immunoassays were used to analyse the binding properties of the individual antibody clones. Different carrier proteins were used in the immunization, selection, and screening phases to avoid enrichment of the antibodies for the carrier protein epitopes. Novel recombinant antibodies against mycophenolic acid and ochratoxin A, with affinities up to 39 nM and 34 nM, respectively, were isolated from a multi-immunized fragment antigen-binding (Fab) library.


Assuntos
Anticorpos/imunologia , Haptenos/imunologia , Imunização/métodos , Biblioteca de Peptídeos , Proteínas Recombinantes/imunologia , Animais , Anticorpos/genética , Anticorpos/metabolismo , Afinidade de Anticorpos/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Humanos , Imunoensaio/métodos , Camundongos , Ácido Micofenólico/imunologia , Ácido Micofenólico/metabolismo , Ocratoxinas/imunologia , Ocratoxinas/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo
3.
Anal Chem ; 88(4): 2446-52, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26785138

RESUMO

Here we demonstrate a novel homogeneous one-step immunoassay, utilizing a pair of recombinant antibody antigen-binding fragments (Fab), that is specific for HT-2 toxin and has a positive readout. Advantages over the conventional competitive immunoassay formats such as enzyme-linked immunosorbent assay (ELISA) are the specificity, speed, and simplicity of the assay. Recombinant antibody HT2-10 Fab recognizing both HT-2 and T-2 toxins was developed from a phage display antibody library containing 6 × 10(7) different antibody clones. Specificity of the immunoassay was introduced by an anti-immune complex (IC) antibody binding the primary antibody-HT-2 toxin complex. When the noncompetitive immune complex assay was compared to the traditional competitive assay, an over 10-fold improvement in sensitivity was observed. Although the HT2-10 antibody has 100% cross-reactivity for HT-2 and T-2 toxins, the immune complex assay is highly specific for HT-2 alone. The assay performance with real samples was evaluated using naturally contaminated wheat reference material. The half-maximal effective concentration (EC50) value of the time-resolved fluorescence resonance energy transfer (TR-FRET) assay was 9.6 ng/mL, and the limit of detection (LOD) was 0.38 ng/mL (19 µg/kg). The labeled antibodies can be predried to the assay vials, e.g., microtiter plate wells, and readout is ready in 10 min after the sample application.


Assuntos
Imunoensaio , Toxina T-2/análogos & derivados , Anticorpos Monoclonais/imunologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Conformação Molecular , Toxina T-2/análise , Toxina T-2/imunologia
4.
Biomacromolecules ; 13(3): 594-603, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22248303

RESUMO

In a number of different applications for enzymes and specific binding proteins a key technology is the immobilization of these proteins to different types of supports. In this work we describe a concept for protein immobilization that is based on nanofibrillated cellulose (NFC). NFC is a form of cellulose where fibers have been disintegrated into fibrils that are only a few nanometers in diameter and have a very large aspect ratio. Proteins were conjugated through three different strategies using amine, epoxy, and carboxylic acid functionalized NFC. The conjugation chemistries were chosen according to the reactive groups on the NFC derivatives; epoxy amination, heterobifunctional modification of amino groups, and EDC/s-NHS activation of carboxylic acid groups. The conjugation reactions were performed in solution and immobilization was performed by spin coating the protein-NCF conjugates. The structure of NFC was shown to be advantageous for both protein performance and stability. The use of NFC allows all covalent chemistry to be performed in solution, while the immobilization is achieved by a simple spin coating or spreading of the protein-NFC conjugates on a support. This allows more scalable methods and better control of conditions compared to the traditional methods that depend on surface reactions.


Assuntos
Fosfatase Alcalina/química , Celulose/química , Proteínas Imobilizadas/química , Nanopartículas/química , Polissacarídeos/química , Soroalbumina Bovina/química , Fosfatase Alcalina/metabolismo , Aminas/química , Animais , Ácidos Carboxílicos/química , Bovinos , Resinas Epóxi/química , Hidrocortisona/imunologia , Hidrocortisona/metabolismo , Microscopia de Força Atômica , Soroalbumina Bovina/metabolismo
5.
Sci Rep ; 11(1): 22214, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782681

RESUMO

Rapid nucleic-acid based tests that can be performed by non-professionals outside laboratory settings could help the containment of the pandemic SARS-CoV-2 virus and may potentially prevent further widespread lockdowns. Here, we present a novel compact portable detection instrument (the Egoo Health System) for extraction-free detection of SARS-CoV-2 using isothermal reverse transcription strand invasion based amplification (RT-SIBA). The SARS-CoV-2 RT-SIBA assay can be performed directly on crude oropharyngeal swabs without nucleic acid extraction with a reaction time of 30 min. The Egoo Health system uses a capsule system, which is automatically sealed tight in the Egoo instrument after applying the sample, resulting in a closed system optimal for molecular isothermal amplification. The performance of the Egoo Health System is comparable to the PCR instrument with an analytical sensitivity of 25 viral RNA copies per SARS-CoV-2 RT-SIBA reaction and a clinical sensitivity and specificity between 87.0-98.4% and 96.6-98.2% respectively.


Assuntos
COVID-19/diagnóstico , COVID-19/epidemiologia , Desenho de Equipamento , Técnicas de Diagnóstico Molecular/instrumentação , Técnicas de Diagnóstico Molecular/métodos , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa/instrumentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/genética , COVID-19/virologia , Telefone Celular , Humanos , Aplicativos Móveis , Orofaringe/virologia , Testes Imediatos , Polimorfismo de Nucleotídeo Único , RNA Viral/genética , Estudos Retrospectivos , Sensibilidade e Especificidade
6.
ACS Omega ; 4(20): 18718-18724, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737833

RESUMO

Thyroid hormones are important regulatory hormones, acting on nearly every cell in the body. The two main thyroid hormones are l-thyroxine (tetraiodo-l-thyronine, T4) and 3,3',5-triiodo-l-thyronine (T3), which are produced in the thyroid gland and secreted into the blood stream. Other important thyroid hormone metabolites are 3,3'-diiodo-l-thyronine (T2) and l-thyronine (T0), which may show increased levels in circulation due to dietary iodine deficiency or other medical disorders. Owing to their central role in cellular functions, sensitive and specific detection methods for thyroid hormones are needed. In this work, native mass spectrometry (MS) was used to quantitate thyroid hormone binding to the anti-T4 antibody Fab fragment. First, the binding affinity for T2 was determined via direct ligand titration experiments. Then, the affinities for the other ligands were determined by competition experiments using T2 as the "low-affinity" reference ligand. The highest affinity was measured for T3, followed by T4, T2, and T0 (K d = 29, 3.4, and 260 nM and 130 µM, respectively). Thus, it is evident that the number and positions of the iodine substituents within the thyronine rings are important for the ligand binding affinity of anti-T4 Fab. Surprisingly, structurally related tetrahalogen bisphenols were also able to bind to anti-T4 Fab with nanomolar affinities.

7.
Toxins (Basel) ; 9(4)2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425967

RESUMO

We developed an HT-2 toxin-specific simple ELISA format with a positive read-out. The assay is based on an anti-immune complex (IC) scFv antibody fragment, which is genetically fused with alkaline phosphatase (AP). The anti-IC antibody specifically recognizes the IC between a primary anti-HT-2 toxin Fab fragment and an HT-2 toxin molecule. In the IC ELISA format, the sample is added together with the scFv-AP antibody to the ELISA plate coated with the primary antibody. After 15 min of incubation and a washing step, the ELISA response is read. A competitive ELISA including only the primary antibody recognizes both HT-2 and T-2 toxins. The anti-IC antibody makes the assay specific for HT-2 toxin, and the IC ELISA is over 10 times more sensitive compared to the competitive assay. Three different naturally contaminated matrices: wheat, barley and oats, were used to evaluate the assay performance with real samples. The corresponding limits of detection were 0.3 ng/mL (13 µg/kg), 0.1 ng/mL (4 µg/kg) and 0.3 ng/mL (16 µg/kg), respectively. The IC ELISA can be used for screening HT-2 toxin specifically and in relevant concentration ranges from all three tested grain matrices.


Assuntos
Toxina T-2/análogos & derivados , Complexo Antígeno-Anticorpo/imunologia , Avena , Grão Comestível/química , Ensaio de Imunoadsorção Enzimática , Contaminação de Alimentos/análise , Hordeum , Fragmentos Fab das Imunoglobulinas/imunologia , Anticorpos de Cadeia Única , Toxina T-2/análise , Toxina T-2/imunologia , Triticum
8.
ACS Chem Biol ; 11(1): 211-21, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26550684

RESUMO

Proteins with high specificity, affinity, and stability are needed for biomolecular recognition in a plethora of applications. Antibodies are powerful affinity tools, but they may also suffer from limitations such as low stability and high production costs. Avidin and streptavidin provide a promising scaffold for protein engineering, and due to their ultratight binding to D-biotin they are widely used in various biotechnological and biomedical applications. In this study, we demonstrate that the avidin scaffold is suitable for use as a novel receptor for several biologically active small molecules: Artificial, chicken avidin-based proteins, antidins, were generated using a directed evolution method for progesterone, hydrocortisone, testosterone, cholic acid, ketoprofen, and folic acid, all with micromolar to nanomolar affinity and significantly reduced biotin-binding affinity. We also describe the crystal structure of an antidin, sbAvd-2(I117Y), a steroid-binding avidin, which proves that the avidin scaffold can tolerate significant modifications without losing its characteristic tetrameric beta-barrel structure, helping us to further design avidin-based small molecule receptors.


Assuntos
Avidina/metabolismo , Bioensaio/métodos , Receptores Artificiais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Avidina/química , Varredura Diferencial de Calorimetria , Galinhas , Cristalografia por Raios X , Fluorometria , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Receptores Artificiais/química , Bibliotecas de Moléculas Pequenas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa