Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
eNeuro ; 7(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33229412

RESUMO

Myosin Va (MyoVa) is a plus-end filamentous-actin motor protein that is highly and broadly expressed in the vertebrate body, including in the nervous system. In excitatory neurons, MyoVa transports cargo toward the tip of the dendritic spine, where the postsynaptic density (PSD) is formed and maintained. MyoVa mutations in humans cause neurologic dysfunction, intellectual disability, hypomelanation, and death in infancy or childhood. Here, we characterize the Flailer (Flr) mutant mouse, which is homozygous for a myo5a mutation that drives high levels of mutant MyoVa (Flr protein) specifically in the CNS. Flr protein functions as a dominant-negative MyoVa, sequestering cargo and blocking its transport to the PSD. Flr mice have early seizures and mild ataxia but mature and breed normally. Flr mice display several abnormal behaviors known to be associated with brain regions that show high expression of Flr protein. Flr mice are defective in the transport of synaptic components to the PSD and in mGluR-dependent long-term depression (LTD) and have a reduced number of mature dendritic spines. The synaptic and behavioral abnormalities of Flr mice result in anxiety and memory deficits similar to that of other mouse mutants with obsessive-compulsive disorder and autism spectrum disorder (ASD). Because of the dominant-negative nature of the Flr protein, the Flr mouse offers a powerful system for the analysis of how the disruption of synaptic transport and lack of LTD can alter synaptic function, development and wiring of the brain and result in symptoms that characterize many neuropsychiatric disorders.


Assuntos
Hipocampo/fisiopatologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Sinapses/patologia , Animais , Transtorno do Espectro Autista , Encéfalo , Camundongos , Mutação/genética
2.
Endocrinology ; 152(8): 3123-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21558312

RESUMO

A synthetic glucocorticoid receptor (GR) ligand with the efficacy of a glucocorticoid, but without the accompanying side effects, would meet an unmet medical need for the treatment of inflammatory diseases. It was hypothesized that a GR ligand that shifted helix 12 in a manner distinct from an agonist and an antagonist would confer a distinct GR conformation, resulting in differential gene expression and, ultimately, dissociation of antiinflammatory activity from side effects. A structural feature expected to interfere with helix 12 was incorporated into a nonsteroidal, tricyclic scaffold to create novel, high-affinity, and selective GR ligands that manifested a dual function in cellular assays, partial but robust agonist activity for inflammatory cytokine inhibition, and full antagonist activity for reporter gene activation. In contrast, analogs not likely to hinder helix 12 exhibited partial agonist activity for reporter gene activation. The requirement of full antagonist activity for substantial side effect dissociation was demonstrated in primary human preadipocytes, hepatocytes, and osteoblasts in which effects on adipogenesis, key genes involved in gluconeogenesis, and genes important for bone formation were examined, respectively. The dissociated GR ligands, despite lacking significant reporter gene activation, weakly recruit a limited number of coactivators such as peroxisomal proliferator-activated receptor-γ coactivator 1α. Transcriptional activation was sensitive to both peroxisomal proliferator-activated receptor-γ coactivator 1α and GR levels, providing a basis for cell-selective modulation of gene expression. The antiinflammatory activity of the dissociated ligands was further demonstrated in mouse models of inflammation. Together these results suggest that these ligands are promising candidates with robust antiinflammatory activity and likely dissociation against glucocorticoid-induced side effects.


Assuntos
Glucocorticoides/efeitos adversos , Receptores de Glucocorticoides/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Gluconeogênese/efeitos dos fármacos , Proteínas de Choque Térmico/fisiologia , Humanos , Camundongos , Mifepristona/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inibidores , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa