RESUMO
The conventional approach to optimising plasmonic sensors is typically based entirely on ensuring phase matching between the excitation wave and the surface plasmon supported by the metallic structure. However, this leads to suboptimal performance, even in the simplest sensor configuration based on the Otto geometry. We present a simplified coupled mode theory approach for evaluating and optimizing the sensing properties of plasmonic waveguide refractive index sensors. It only requires the calculation of propagation constants, without the need for calculating mode overlap integrals. We apply our method by evaluating the wavelength-, device length- and refractive index-dependent transmission spectra for an example silicon-on-insulator-based sensor of finite length. This reveals all salient spectral features which are consistent with full-field finite element calculations. This work provides a rapid and convenient framework for designing dielectric-plasmonic sensor prototypes-its applicability to the case of fibre plasmonic sensors is also discussed.
RESUMO
One important shortcoming of terahertz technology is the relative absence of convenient, flexible, and reconfigurable waveguides with low attenuation and small bend losses. While recent years have been marked by remarkable progress in lowering the impact of material losses using hollow-core guidance, such waveguides often have centimeter-scale diameter and are therefore not flexible. Here we experimentally and numerically investigate antiresonant dielectric waveguides made of thermoplastic polyurethane, a commonly used dielectric with a low Young's modulus. The hollow-core nature of antiresonant fibers leads to low transmission losses using simple structures, whereas the low Young's modulus of polyurethane makes them extremely flexible. The structures presented enable millimeter-wave manipulation in the same spirit as conventional (visible- and near-IR-) optical fibers, i.e. conveniently and reconfigurably, despite their centimeter-thick diameter. We investigate two canonical antiresonant geometries formed by one- and six-tubes, experimentally comparing their transmission, bend losses and mode profiles. The waveguides under investigation have loss below 1 dB/cm in their sub-THz transmission bands, increasing by 1 dB/cm for a bend radius of about 10 cm. We find that the six-tube waveguide outperforms its one-tube counterpart for smaller bend radii (here: 10cm); for larger bend radii, coupling to cladding tube modes can lead to a drop in transmission at specific frequencies in the six-tube waveguide that does not occur in the one-tube waveguide.
RESUMO
Bulk materials with a relative electric permittivity ε close to zero exhibit giant Kerr nonlinearities. However, harnessing this response in guided-wave geometries is not straightforward, due to the extreme and counterintuitive properties of such epsilon-near-zero materials. Here we investigate, through rigorous calculations of the nonlinear coefficient, how the remarkable nonlinear properties of such materials can be exploited in several structures, including bulk films, plasmonic nanowires, and metal nanoapertures. We find the largest nonlinear response when the modal area and group velocity are simultaneously minimized, leading to omnidirectional field enhancement. This insight will be key for understanding nonlinear nanophotonic systems with extreme nonlinearities and points to new design paradigms.
RESUMO
The nonlinear coefficient γ is central to the study of cubically nonlinear optical guided-wave structures. It is well understood for lossless waveguides, but less so for lossy systems. A number of methods for calculating γ in lossy systems have been proposed, each resulting in different expressions. Here we identify the most accurate and practical expression for γ. We do so by applying the different expressions γ to air-gold surface plasmon polariton modes in the interband region of gold and compare with a fully numerical iterative method. We thus resolve the outstanding issue of which expression for the nonlinear coefficient to use for lossy waveguides, enabling new insights into the nonlinear response of such systems.
RESUMO
We numerically and analytically study orthogonal and angled coupling schemes between a dielectric slab waveguide and a plasmonic slot waveguide for a large range of geometric and material parameters. We obtain high orthogonal coupling transmission efficiencies (up to 78% for 2D calculations, and 54% for 3D calculations) over a wide range of refractive indices, and provide simple analytic arguments that explain the underlying trends. The insights obtained point to angled couplers with even higher coupling efficiencies (up to 86% in 2D, and 61% in 3D). We find that angled plasmonic coupling is well suited for large dielectric waveguides at the phase matching angle. These results suggest new capabilities for efficient dielectric-plasmonic interconnects that can be applied to a wide variety of material combinations and geometries.
RESUMO
We experimentally observe an effective PT-phase transition through the exceptional point in a hybrid plasmonic-dielectric waveguide system. Transmission experiments reveal fundamental changes in the underlying eigenmode interactions as the environmental refractive index is tuned, which can be unambiguously attributed to a crossing through the plasmonic exceptional point. These results extend the design opportunities for tunable non-Hermitian physics to plasmonic systems.
RESUMO
We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.
RESUMO
We present a broadband and efficient short-range plasmonic directional coupler design, for the delivery and collection of deeply sub-wavelength radiation to tapered plasmonic nanowires. We show a proof-of-concept design using a planar geometry operating at wavelengths between 1.2 -2.4 µm, showing that the propagation characteristics predicted by an Eigenmode analysis are in excellent agreement with finite element simulations. This analytical formulation is straightforward to implement and immediately provides the power-exchange properties of hybrid plasmonic waveguides. An investigation of both waveguide delivery and collection performance to and from a plasmonic nano-tip is performed. We show that this design strategy can be straightforwardly adapted to a realistic hybrid fiber geometry, containing wire diameters more than one order of magnitude larger than the planar geometries, with important applications in all-fiber plasmonic superfocussing, and nonlinear plasmonics.
RESUMO
We analyze the modal attenuation properties of silica hollow-core fibers with a gold-wire based indefinite metamaterial cladding at 10.6 µm. We find that by varying the metamaterial feature sizes and core diameter, the loss discrimination can be tailored such that either the HE11, TE01 or TM01 mode has the lowest loss, which is particularly difficult to achieve for the radially polarized mode in commonly used hollow-core fibers. Furthermore, it is possible to tailor the HE11 and TM01 modes in the metamaterial-clad waveguide so that they possess attenuations lower than in hollow tubes composed of the individual constituent materials. We show that S-parameter retrieval techniques in combination with an anisotropic dispersion equation can be used to predict the loss discrimination properties of such fibers. These results pave the way for the design of metamaterial hollow-core fibers with novel guidance properties, in particular for applications demanding cylindrically polarized modes.
RESUMO
We present a mathematical model that allows interpreting the dispersion and attenuation of modes in hollow-core fibers (HCFs) on the basis of single interface reflection, giving rise to analytic and semi-analytic expressions for the complex effective indices in the case where the core diameter is large and the guiding is based on the reflection by a thin layer. Our model includes two core-size independent reflection parameters and shows the universal inverse-cubed core diameter dependence of the modal attenuation of HCFs. It substantially reduces simulation complexity and enables large scale parameter sweeps, which we demonstrate on the example of a HCF with a highly anisotropic metallic nanowire cladding, resembling an indefinite metamaterial at high metal filling fractions. We reveal design rules that allow engineering modal discrimination and show that metamaterial HCFs can principally have low losses at mid-IR wavelengths (< 1 dB/m at 10.6 µm). Our model can be applied to a great variety of HCFs with large core diameters and can be used for advanced HCF design and performance optimization, in particular with regard to dispersion engineering and modal discrimination.
RESUMO
Hyperlenses and hyperbolic media endoscopes can overcome the diffraction limit by supporting propagating high spatial frequency extraordinary waves. While hyperlenses can resolve subwavelength details far below the diffraction limit, images obtained from them are not perfect: resonant high spatial frequency slab modes as well as diffracting ordinary waves cause image distortion and artefacts. In order to use hyperlenses as broad-band subwavelength imaging devices, it is thus necessary to avoid or correct such unwanted artefacts. Here we introduce three methods, namely convolution, field averaging, and power averaging, to remove imaging artefacts over wide frequency bands, and numerically demonstrate their effectiveness based on simulations of a wire medium endoscope. We also define a projection in spatial Fourier space to effectively filter out all ordinary waves, leading to considerable reduction in image distortion. These methods are outlined and demonstrated for simple and complex apertures.
RESUMO
We show broadband azimuthal polarization state conversion using an entirely connectorized step-index fiber with a central gold nanowire. This device provides broadband polarization discrimination of the low-loss TE01 fiber mode with respect to all other modes, and converts light into the azimuthal polarization state, resulting in a high beam quality and an azimuthal conversion efficiency of 37%. The device is monolithically integrated into fiber circuitry, representing a new platform for plasmonics and fiber optics and enabling important applications in super-resolution microscopy, laser tweezing, and plasmonic superfocussing.
RESUMO
Metamaterials with extreme anisotropy overcome the diffraction limit by supporting the propagation of otherwise evanescent waves. Recent experiments in slabs of wire media have shown that images deteriorate away from the longitudinal Fabry-Perot resonances of the slab. Existing theoretical models explain this using nonlocality, surface waves, and additional boundary conditions. We show that image aberrations can be understood as originating from cavity resonances of uniaxial media with large local axial permittivity. We apply a simple cavity resonator model and a transfer matrix approach to replicate salient experimental features of wire media hyperlenses. These results offer avenues to reduce observed imaging artefacts, and are applicable to all uniaxial media with large magnitude of the axial permittivity, e.g., wire media and layered media.
RESUMO
Silicon-based microdevices are considered promising candidates for consolidating several terahertz technologies into a common and practical platform. The practicality stems from the relatively low loss, device compactness, ease of fabrication, and wide range of available passive and active functionalities. Nevertheless, typical device footprints are limited by diffraction to several hundreds of micrometers, which hinders emerging nanoscale applications at terahertz frequencies. While metallic gap modes provide nanoscale terahertz confinement, efficiently coupling to them is difficult. Here, we present and experimentally demonstrate a strategy for efficiently interfacing subterahertz radiation (λ = 1 mm) to a waveguide formed by a nanogap, etched in a gold film, that is 200 nm (λ/5000) wide and up to 4.5 mm long. The design principle relies on phase matching dielectric and nanogap waveguide modes, resulting in efficient directional coupling between them when they are placed side-by-side. Broadband far-field terahertz transmission experiments through the dielectric waveguide reveal a transmission dip near the designed wavelength due to resonant coupling. Near-field measurements on the surface of the gold layer confirm that such a dip is accompanied by a transfer of power to the nanogap, with an estimated coupling efficiency of â¼10%. Our approach efficiently interfaces millimeter waves with nanoscale waveguides in a tailored and controllable manner, with important implications for on-chip nanospectroscopy, telecommunications, and quantum technologies.
RESUMO
Imaging with resolutions much below the wavelength λ - now common in the visible spectrum - remains challenging at lower frequencies, where exponentially decaying evanescent waves are generally measured using a tip or antenna close to an object. Such approaches are often problematic because probes can perturb the near-field itself. Here we show that information encoded in evanescent waves can be probed further than previously thought, by reconstructing truthful images of the near-field through selective amplification of evanescent waves, akin to a virtual superlens that images the near field without perturbing it. We quantify trade-offs between noise and measurement distance, experimentally demonstrating reconstruction of complex images with subwavelength features down to a resolution of λ/7 and amplitude signal-to-noise ratios < 25dB between 0.18-1.5 THz. Our procedure can be implemented with any near-field probe, greatly relaxes experimental requirements for subwavelength imaging at sub-optical frequencies and opens the door to non-invasive near-field scanning.
RESUMO
We characterize spatial dispersion in longitudinally invariant drawn metamaterials with a magnetic response at terahertz frequencies, whereby a change in the angle of the incident field produces a shift in the resonant frequency. We present a simple analytical model to predict this shift. We also demonstrate that the spatial dispersion is eliminated by breaking the longitudinal invariance using laser ablation. The experimental results are in agreement with numerical simulations.
Assuntos
Imãs , Modelos Teóricos , Simulação por Computador , Campos Magnéticos , Doses de RadiaçãoRESUMO
We present a novel method for producing drawn metamaterials containing slotted metallic cylinder resonators, possessing strong magnetic resonances in the terahertz range. The resulting structures are either spooled to produce a 2-dimensional metamaterial monolayer, or stacked to produce three-dimensional multi-layered metamaterials. We experimentally investigate the effects of the resonator size and number of metamaterial layers on transmittance, observing magnetic resonances between 0.1 and 0.4 THz, in good agreement with simulations. Such fibers promise future applications in mass-produced stacked or woven metamaterials.
RESUMO
We present the design of an invisible metamaterial fibre operating at optical frequencies, which could be fabricated by adapting existing fibre drawing techniques. The invisibility is realised by matching the refractive index of the metamaterial fibre with the surroundings. We present a general recipe for the fabrication of such fibres, and numerically characterise a specific example using hexagonally arranged silver nanowires in a silica background. We find that invisibility is highly sensitive to details of the metamaterial boundary, a problem that is likely to affect most invisibility and cloaking schemes.
Assuntos
Manufaturas , Nanofios , Fibras Ópticas , Óptica e Fotônica/métodos , Lasers , Modelos Teóricos , Nanotecnologia/métodos , Espalhamento de RadiaçãoRESUMO
Photonic integrated circuits (PICs) are revolutionizing nanotechnology, with far-reaching applications in telecommunications, molecular sensing, and quantum information. PIC designs rely on mature nanofabrication processes and readily available and optimised photonic components (gratings, splitters, couplers). Hybrid plasmonic elements can enhance PIC functionality (e.g., wavelength-scale polarization rotation, nanoscale optical volumes, and enhanced nonlinearities), but most PIC-compatible designs use single plasmonic elements, with more complex circuits typically requiring ab initio designs. Here we demonstrate a modular approach to post-processes off-the-shelf silicon-on-insulator (SOI) waveguides into hybrid plasmonic integrated circuits. These consist of a plasmonic rotator and a nanofocusser, which generate the second harmonic frequency of the incoming light. We characterize each component's performance on the SOI waveguide, experimentally demonstrating intensity enhancements of more than 200 in an inferred mode area of 100 nm2, at a pump wavelength of 1320 nm. This modular approach to plasmonic circuitry makes the applications of this technology more practical.
RESUMO
Atomically thin transition metal dichalcogenides are highly promising for integrated optoelectronic and photonic systems due to their exciton-driven linear and nonlinear interactions with light. Integrating them into optical fibers yields novel opportunities in optical communication, remote sensing, and all-fiber optoelectronics. However, the scalable and reproducible deposition of high-quality monolayers on optical fibers is a challenge. Here, the chemical vapor deposition of monolayer MoS2 and WS2 crystals on the core of microstructured exposed-core optical fibers and their interaction with the fibers' guided modes are reported. Two distinct application possibilities of 2D-functionalized waveguides to exemplify their potential are demonstrated. First, the excitonic 2D material photoluminescence is simultaneously excited and collected with the fiber modes, opening a novel route to remote sensing. Then it is shown that third-harmonic generation is modified by the highly localized nonlinear polarization of the monolayers, yielding a new avenue to tailor nonlinear optical processes in fibers. It is anticipated that the results may lead to significant advances in optical-fiber-based technologies.