Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genet Mol Biol ; 47(1): e20230279, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38385448

RESUMO

Delimiting species is challenging in recently diverged species, and adaptive radiation is fundamental to understanding the evolutionary processes because it requires multiple ecological opportunities associated with adaptation to biotic and abiotic environments. The young Petunia genus (Solanaceae) is an excellent opportunity to study speciation because of its association with pollinators and unique microenvironments. This study evaluated the phylogenetic relationships among a Petunia clade species with different floral syndromes that inhabit several environments. We based our work on multiple individuals per lineage and employed nuclear and plastid phylogenetic markers and nuclear microsatellites. The phylogenetic tree revealed two main groups regarding the elevation of the distribution range, whereas microsatellites showed high polymorphism-sharing splitting lineages into three clusters. Isolation by distance, migration followed by new environment colonization, and shifts in floral syndrome were the motors for lineage differentiation, including infraspecific structuring, which suggests the need for taxonomic revision in the genus.

2.
Genet Mol Biol ; 46(3 Suppl 1): e20230142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38048778

RESUMO

The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.

3.
Mol Ecol ; 31(10): 2847-2864, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332594

RESUMO

Speciation begins with the isolation of some individuals or subpopulations due to drivers promoting a diverging genetic distribution. Such isolation may occur, followed by different processes and pressures. Isolation-by-distance (IBD), isolation-by-adaptation (IBA), and isolation-by-colonization (IBC) have been recognized as the main divergence patterns. Still, it is not easy to distinguish which one is the main pattern as each one may act at different points in time or even simultaneously. Using an extensive genome coverage from a Petunia species complex with coastal and inland distribution and multiple analytical approaches on population genomics and phylogeography, we showed a complex interplay between neutral and selective forces acting on the divergence process. We found 18,887 SNPs potentially neutral and 924 potentially under selection (outlier) loci. All analyses pointed that each subspecies displays its own genetic component and evolutionary history. We suggested plausible ecological drivers for such divergence in a southernmost South Atlantic coastal plain in Brazil and Uruguay and identified a connection between adaptation and environment heterogeneity.


Assuntos
Genética Populacional , Solanaceae , Evolução Biológica , Humanos , Filogeografia , Polimorfismo de Nucleotídeo Único/genética
4.
Genet Mol Biol ; 43(2): e20190271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32556035

RESUMO

Interspecific hybridization has been fundamental in plant evolution. Nevertheless, the fate of hybrid zones throughout the generations remains poorly addressed. We analyzed a pair of recently diverged, interfertile, and sympatric Petunia species to ask what fate the interspecific hybrid population has met over time. We analyzed the genetic diversity in two generations from two contact sites and evaluated the effect of introgression. To do this, we collected all adult plants from the contact zones, including canonicals and intermediary colored individuals, and compared them with purebred representatives of both species based on seven highly informative microsatellite loci. We compared the genetic diversity observed in the contact zones with what is seen in isolated populations of each species, considering two generations of these annual species. Our results have confirmed the genetic differentiation between the species and the hybrid origin of the majority of the intermediary colored individuals. We also observed a differentiation related to genetic variability and inbreeding levels among the populations. Over time, there were no significant differences per site related to genetic diversity or phenotype composition. We found two stable populations kept by high inbreeding and backcross rates that influence the genetic diversity of their parental species through introgression.

5.
BMC Evol Biol ; 17(1): 234, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187208

RESUMO

BACKGROUND: The classification of closely related plants is not straightforward. These morphologically similar taxa frequently maintain their inter-hybridization potential and share ancestral polymorphisms as a consequence of their recent divergence. Under the biological species concept, they may thus not be considered separate species. The Petunia integrifolia complex is especially interesting because, in addition to the features mentioned above, its taxa share a pollinator, and their geographical ranges show multiple overlaps. Here, we combined plastid genome sequences, nuclear microsatellites, AFLP markers, ecological niche modelling, and bioregions analysis to investigate the genetic variability between the different taxa of the P. integrifolia complex in a comprehensive sample covering the entire geographical range of the complex. RESULTS: Results from molecular markers did not fully align with the current taxonomic classification. Niche modelling and bioregions analyses revealed that taxa were associated with different ecological constraints, indicating that the habitat plays an important role in preserving species boundaries. For three taxa, our analyses showed a mostly conserved, non-overlapping geographical distribution over time. However, for two taxa, niche modelling found an overlapping distribution over time; these taxa were also associated with the same bioregions. CONCLUSIONS: cpDNA markers were better able to discriminate between Petunia taxa than SSRs and AFLPs. Overall, our results suggest that the P. integrifolia complex represents a continuum of individuals from distant and historically isolated populations, which share some morphological traits, but are established in four different evolutionary lineages.


Assuntos
Ecossistema , Variação Genética , Geografia , Petunia/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Cloroplastos/genética , Marcadores Genéticos , Haplótipos/genética , Repetições de Microssatélites/genética , Filogenia , Especificidade da Espécie
6.
Genet Mol Biol ; 39(1): 86-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27007902

RESUMO

Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.

7.
Ann Bot ; 115(6): 939-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808656

RESUMO

BACKGROUND AND AIMS: The evolution of selfing is one of the most common transitions in flowering plants, and this change in mating pattern has important systematic and ecological consequences because it often initiates reproductive isolation and speciation. Petunia axillaris (Solanaceae) includes three allopatric subspecies widely distributed in temperate South America that present different degrees of self-compatibity and incompatibility. One of these subspecies is co-distributed with P. exserta in a restricted area and presents a complex, not well-understood mating system. Artificial crossing experiments suggest a complex system of mating in this sympatric area. The main aims of this study were to estimate the pollen dispersal distance and to evaluate the breeding structure of P. axillaris subsp. axillaris, a hawkmoth-pollinated taxon from this sympatric zone. METHODS: Pollen dispersal distance was compared with nearest-neighbours distance, and the differentiation in the pollen pool among mother plants was estimated. In addition, the correlation between genetic differentiation and spatial distance among plants was tested. All adult individuals (252) within a space of 2800 m(2) and 15 open-pollinated progeny (285 seedlings) were analysed. Genetic analyses were based on 12 polymorphic microsatellite loci. KEY RESULTS: A high proportion of self-pollination was found, indicating a mixed-mating system. The maximum pollen dispersal distance was 1013 m, but most pollination events (96 %) occurred at a distance of 0 m, predominantly in an inbreeding system. Both parents among sampled individuals could be identifed in 60-85 % of the progeny. CONCLUSIONS: The results show that most pollen dispersal in the hawkmoth-pollinated P. axillaris subsp. axillaris occurs within populations and there is a high proportion of inbreeding. This mating system appears to favour species integrity in a secondary contact zone with the congener species P. exserta.


Assuntos
Cruzamento , Pradaria , Mariposas/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Dispersão de Sementes/fisiologia , Animais , Loci Gênicos , Genética Populacional , Endogamia , Repetições de Microssatélites/genética , Modelos Biológicos , Pólen/genética , Especificidade da Espécie
8.
Mol Ecol ; 23(2): 374-89, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372681

RESUMO

Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone.


Assuntos
Evolução Biológica , Variação Genética , Petunia/classificação , Teorema de Bayes , Núcleo Celular/genética , Clima , DNA de Cloroplastos/genética , DNA de Plantas/genética , Flores/anatomia & histologia , Genética Populacional , Pradaria , Haplótipos , Hibridização Genética , Modelos Genéticos , Petunia/anatomia & histologia , Petunia/genética , Análise de Sequência de DNA , América do Sul
9.
Mol Phylogenet Evol ; 70: 504-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24161675

RESUMO

Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize.


Assuntos
Núcleo Celular/genética , Petunia/genética , Filogenia , Plastídeos/genética , Teorema de Bayes , Marcadores Genéticos , Variação Genética , Haplótipos , Hibridização Genética , Análise de Sequência de DNA
10.
AoB Plants ; 11(4): plz037, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31391895

RESUMO

Different genetic patterns have been demonstrated for narrowly distributed taxa, many of them linking rarity to evolutionary history. Quite a few species in young genera are endemics and have several populations that present low variability, sometimes attributed to geographical isolation or dispersion processes. Assessing the genetic diversity and structure of such species may be important for protecting them and understanding their diversification history. In this study, we used microsatellite markers and plastid sequences to characterize the levels of genetic variation and population structure of two endemic and restricted species that grow in isolated areas on the margin of the distribution of their respective genera. Plastid and nuclear diversities were very low and weakly structured in their populations. Evolutionary scenarios for both species are compatible with open-field expansions during the Pleistocene interglacial periods and genetic variability supports founder effects to explain diversification. At present, both species are suffering from habitat loss and changes in the environment can lead these species towards extinction.

11.
AoB Plants ; 10(5): ply057, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386543

RESUMO

Petunia is endemic to South America grasslands; member of this genus exhibit variation in flower colour and shape, attracting bees, hawkmoths or hummingbirds. This group of plants is thus an excellent model system for evolutionary studies of diversification associated with pollinator shifts. Our aims were to identify the legitimate pollinator of Petunia secreta, a rare and endemic species, and to assess the importance of floral traits in pollinator attraction in this Petunia species. To determine the legitimate pollinator, field observations were conducted, and all floral visitors were recorded and evaluated. We also measured the nectar volume and sugar concentration. To characterize morphological cues for pollinators, we assessed the ultraviolet (UV)-light response in detached flowers, and characterized the floral pigments and pollen volatile scents for four different Petunia species that present different pollination syndromes. Petunia secreta shares the most recent ancestor with a white hawkmoth-pollinated species, P. axillaris, but presents flavonols and anthocyanin pigments responsible for the pink corolla colour and UV-light responses that are common to bee-pollinated Petunia species. Our study showed that a solitary bee in the genus Pseudagapostemon was the most frequent pollinator of P. secreta, and these bees collect only pollen as a reward. Despite being mainly bee-pollinated, different functional groups of pollinators visit P. secreta. Nectar volume, sugar concentration per flower, morphology and components of pollen scent would appear to be attractive to several different pollinator groups. Notably, the corolla includes a narrow tube with nectar at its base that cannot be reached by Pseudagapostemon, and flowers of P. secreta appear to follow an evolutionary transition, with traits attractive to several functional groups of pollinators. Additionally, the present study shows that differences in the volatiles of pollen scent are relevant for plant mutualistic and antagonist interactions in Petunia species and that pollen scent profile plays a key role in characterizing pollination syndromes.

12.
AoB Plants ; 82016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26768602

RESUMO

The analysis of genetic structure and variability of isolated species is of critical importance in evaluating whether stochastic or human-caused factors are affecting rare species. Low genetic diversity compromises the ability of populations to evolve and reduces their chances of survival under environmental changes. Petunia secreta, a rare and endemic species, is an annual and heliophilous herb that is bee-pollinated and easily recognizable by its purple and salverform corolla. It was described as a new species of the Petunia genus in 2005. Few individuals of P. secreta have been observed in nature and little is known about this species. All the natural populations of P. secreta that were found were studied using 15 microsatellite loci, two intergenic plastid sequences and morphological traits. Statistical analysis was performed to describe the genetic diversity of this rare species and the results compared with those of more widespread and frequent Petunia species from the same geographic area to understand whether factors associated with population size could affect rare species of this genus. The results showed that despite its rarity, P. secreta presented high genetic diversity that was equivalent to or even higher than that of widespread Petunia species. It was shown that this species is divided into two evolutionary lineages, and the genetic differentiation indices between them and other congeneric species presented different patterns. The major risk to P. secreta maintenance is its rarity, suggesting the necessity of a preservation programme and more biological and evolutionary studies that handle the two evolutionary lineages independently.

13.
AoB Plants ; 72015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26187606

RESUMO

Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids based on the presence of private alleles. These properties indicate that these markers will be helpful tools in evolutionary studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa