Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Mass Spectrom Rev ; 42(1): 206-226, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34392556

RESUMO

Photodissociation action spectroscopy has made a great progress in expanding investigations of gas-phase ion structures. This review deals with aspects of gas-phase ion electronic excitations that result in wavelength-dependent dissociation and light emission via fluorescence, chiefly covering the ultraviolet and visible regions of the spectrum. The principles are briefly outlined and a few examples of instrumentation are presented. The main thrust of the review is to collect and selectively present applications of UV-vis action spectroscopy to studies of stable gas-phase ion structures and combinations of spectroscopy with ion mobility, collision-induced dissociation, and ion-ion reactions leading to the generation of reactive intermediates and electronic energy transfer.

2.
J Phys Chem A ; 128(6): 1109-1123, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316031

RESUMO

We report a combined experimental and computational study of adenosine cation radicals that were protonated at adenine and furnished with a radical handle in the form of an acetoxyl radical, •CH2COO, that was attached to ribose 5'-O. Radicals were generated by collision-induced dissociation (CID) and characterized by tandem mass spectrometry and UV-vis photodissociation action spectroscopy. The acetoxyl radical was used to probe the kinetics of intramolecular hydrogen transfer from the ribose ring positions that were specifically labeled with deuterium at C1', C2', C3', C4', C5', and in the exchangeable hydroxyl groups. Hydrogen transfer was found to chiefly involve 3'-H with minor contributions by 5'-H and 2'-H, while 4'-H was nonreactive. The hydrogen transfer rates were affected by deuterium isotope effects. Hydrogen transfer triggered ribose ring cleavage by consecutive dissociations of the C4'-O and C1'-C2' bonds, resulting in expulsion of a C6H9O4 radical and forming a 9-formyladenine ion. Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state theory (TST) calculations of unimolecular constants were carried out using the effective CCSD(T)/6-311++G(3d,2p) and M06-2X/aug-cc-pVTZ potential energy surfaces for major isomerizations and dissociations. The kinetic analysis showed that hydrogen transfer to the acetoxyl radical was the rate-determining step, whereas the following ring-opening reactions in ribose radicals were fast. Using DFT-computed energies, a comparison was made between the thermochemistry of radical reactions in adenosine and 2'-deoxyadenosine cation radicals. The 2'-deoxyribose ring showed lower TS energies for both the rate-determining 3'-H transfer and ring cleavage reactions.


Assuntos
Adenosina , Desoxiadenosinas , Ribose , Cinética , Deutério , Desoxirribose/química , Hidrogênio , Cátions/química , Radicais Livres/química
3.
Phys Chem Chem Phys ; 25(47): 32292-32304, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990588

RESUMO

Photochemical crosslinking in gas-phase ion complexes has been introduced as a method to study biomolecular structures and dynamics. Emphasis has been on carbene-based crosslinking induced by photodissociation of diazirine-tagged ions. The features that characterize gas-phase crosslinking include (1) complex formation in electrospray droplets that allows for library-type screening; (2) well defined stoichiometry of the complexes due to mass-selective isolation; (3) facile reaction monitoring and yield determination, and (4) post-crosslinking structure analysis by tandem mass spectrometry that has been combined with hydrogen-deuterium exchange, UV-vis action spectroscopy, and ion mobility measurements. In this account, examples are given of peptide-peptide, peptide-nucleotide, and peptide-ligand crosslinking that chiefly used carbene-based reactions. The pros and cons of gas-phase crosslinking are discussed. Nitrile-imine based crosslinking in gas-phase ions is introduced as a promising new approach to ion structure analysis that offers high efficiency and has the potential for wide ranging applications.

4.
J Phys Chem A ; 127(28): 5899-5913, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37433135

RESUMO

We report experimental and computational studies of protonated adenine C-8 σ-radicals that are presumed yet elusive reactive intermediates of oxidative damage to nucleic acids. The radicals were generated in the gas phase by the collision-induced dissociation of C-8-Br and C-8-I bonds in protonated 8-bromo- and 8-iodoadenine as well as by 8-bromo- and 8-iodo-9-methyladenine. Protonation by electrospray of 8-bromo- and 8-iodoadenine was shown by cyclic-ion mobility mass spectrometry (c-IMS) to form the N-1-H, N-9-H and N-3-H, N-7-H protomers in 85:15 and 81:19 ratios, respectively, in accordance with the equilibrium populations of these protomers in water-solvated ions that were calculated by density functional theory (DFT). Protonation of 8-halogenated 9-methyladenines yielded single N-1-H protomers, which was consistent with their thermodynamic stability. The radicals produced from the 8-bromo and 8-iodo adenine cations were characterized by UV-vis photodissociation action spectroscopy (UVPD) and c-IMS. UVPD revealed the formation of C-8 σ-radicals along with N-3-H, N-7-H-adenine π-radicals that arose as secondary products by hydrogen atom migrations. The isomers were identified by matching their action spectra against the calculated vibronic absorption spectra. Deuterium isotope effects were found to slow the isomerization and increase the population of C-8 σ-radicals. The adenine cation radicals were separated by c-IMS and identified by their collision cross sections, which were measured relative to the canonical N-9-H adenine cation radical that was cogenerated in situ as an internal standard. Ab initio CCSD(T)/CBS calculations of isomer energies showed that the adenine C-8 σ-radicals were local energy minima with relative energies at 76-79 kJ mol-1 above that of the canonical adenine cation radical. Rice-Ramsperger-Kassel-Marcus calculations of unimolecular rate constants for hydrogen and deuterium migrations resulting in exergonic isomerizations showed kinetic shifts of 10-17 kJ mol-1, stabilizing the C-8 σ-radicals. C-8 σ-radicals derived from N-1-protonated 9-methyladenine were also thermodynamically unstable and readily isomerized upon formation.

5.
J Phys Chem A ; 126(16): 2480-2497, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35439003

RESUMO

Cation radicals of DNA nucleosides, 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine, can exist in standard canonical forms or as noncanonical isomers in which the charge is introduced by protonation of the nucleobase, whereas the radical predominantly resides in the deoxyribose moiety. Density functional theory as well as correlated ab initio calculations with coupled clusters (CCSD(T)) that were extrapolated to the complete basis set limit showed that noncanonical nucleoside ion isomers were thermodynamically more stable than their canonical forms in both the gas phase and as water-solvated ions. This indicated the possibility of exothermic conversion of canonical to noncanonical forms. The noncanonical isomers were calculated to have very low adiabatic ion-electron recombination energies (REad) for the lowest-energy isomers 2'-deoxy-(N-3H)adenos-1'-yl (4.74 eV), 2'-deoxy-(N-7H)guanos-1'-yl (4.66 eV), 2'-deoxy-(N-3H)cytid-1'-yl (5.12 eV), and 2'-deoxy-5-methylene-(O-2H)uridine (5.24 eV). These were substantially lower than the REad value calculated for the canonical 2'-deoxyadenosine, 2'-deoxy guanosine, 2'-deoxy cytidine, and 2'-deoxy thymidine cation radicals, which were 7.82, 7.46, 8.14, and 8.20 eV, respectively, for the lowest-energy ion conformers of each type. Charge and spin distributions in noncovalent cation-radical dA⊂dT and dG⊂dC nucleoside pairs and dAT, dCT, dTC, and dGC dinucleotides were analyzed to elucidate the electronic structure of the cation radicals. Born-Oppenheimer molecular dynamics trajectory calculations of the dinucleotides and nucleoside pairs indicated rapid exothermic proton transfer from noncanonical T+· to A in both dAT+· and dA⊂dT+·, leading to charge and radical separation. Noncanonical T+· in dCT+· and dTC+· initiated rapid proton transfer to cytosine, whereas the canonical dCT+· dinucleotide ion retained the cation radical structure without isomerization. No spontaneous proton transfer was found in dGC+· and dG⊂dC+· containing canonical neutral and noncanonical ionized deoxycytidine.


Assuntos
DNA , Prótons , Cátions/química , DNA/química , Desoxicitidina , Radicais Livres/química , Isomerismo
6.
J Labelled Comp Radiopharm ; 65(2): 36-44, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34957593

RESUMO

The multifunctional radioligand [3 H]T0901317 ([3 H]1) has been employed as a powerful autoradiographic tool to target several receptors, such as liver X, farnesoid X, and retinoic acid-related orphan receptor alpha and gamma subtypes at nanomolar concentrations. Although [3 H]1 is commercially available and its synthesis via tritiodebromination has been reported, the market price of this radioligand and the laborious synthesis of corresponding bromo-intermediate potentially preclude its widespread use in biochemical, pharmacological, and pathological studies in research lab settings. We exploit recent reports on hydrogen-isotope exchange (HIE) reactions in tertiary benzenesulfonamides where the sulfonamide represents an ortho-directing group that facilitates CH activation in the presence of homogenous iridium(I) catalysts. Herein, we report a time- and cost-efficient method for the tritium late-stage labeling of compound 1-a remarkably electron-poor substrate owing to the tertiary trifluoroethylsulfonamide moiety. Under a straightforward HIE condition using a commercially available Kerr-type NHC Ir(I) complex, [(cod)Ir (NHC)Cl], the reaction with 1 afforded a specific activity of 10.8 Ci/mmol. Additionally, alternative HIE conditions using the heterogeneous catalyst of Ir-black provided sufficient 0.72 D-enrichment of 1 but unexpectedly failed while repeating with tritium gas.


Assuntos
Elétrons , Hidrogênio , Catálise , Fluorocarbonos , Hidrogênio/química , Isótopos , Sulfonamidas , Trítio/química , Benzenossulfonamidas
7.
J Labelled Comp Radiopharm ; 65(12): 309-314, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36002916

RESUMO

Fast and reasonable low-scale (200 nmol) syringe-made synthesis of 15 N-labeled oligonucleotides representing DNA trinucleotide codons is communicated. All codons were prepared by solid-phase controlled pore glass synthesis column technique via the phosphoramidite method. Twenty-four labeled oligonucleotides covering the DNA genetic code alphabet were prepared using commercially available reagents and affordable equipment in a reasonably short period of time, with acceptable yields and purity for direct applications in mass spectrometry.


Assuntos
Oligonucleotídeos , Seringas , Códon , DNA/química , Espectrometria de Massas , Oligonucleotídeos/química
8.
J Phys Chem A ; 125(1): 338-348, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33351618

RESUMO

Noncanonical nucleobases and nucleosides represent newly discovered species of relevance for DNA ionization. We report a targeted synthesis of gas-phase 9-methylene(1H)adenine cation radical (2+·) as a low-energy isomer of ionized 9-methyladenine. Ion 2+· showed unique collision-induced dissociation and UV-vis photodissociation action spectra that distinguished it from other cation radical isomers. Ab initio energy calculations with coupled cluster theory extrapolated to the complete basis set limit, CCSD(T)/CBS, identified cation radical 2+· as the global energy minimum of the adenine-related C6H7N5+· isomers. The action spectrum of 2+· was assigned on the basis of vibronic absorption spectra that were calculated with time-dependent density functional theory for multiple vibrational configurations of thermal ions. The major dissociation of 2+· proceeded by hydrogen loss that was elucidated by deuterium labeling at the exchangeable N-1 and NH2 positions and C-8 position and by kinetic analysis. The dissociation involved a reversible rearrangement to intermediate dihydropteridine structures, yielding a protonated aminopteridine as the product, which was identified by multistep UV-vis action spectroscopy. We also report a computational study of related noncanonical isomers of 2'-deoxyadenosine cation radical having the radical defect at C-1' that were found to be thermodynamically more stable than the canonical isomer in both the gas phase and aqueous solution. The noncanonical isomers were calculated to have extremely low ion-electron recombination energies of 4.42-5.10 eV that would make them dead-end hole traps if produced by DNA ionization.

9.
J Phys Chem A ; 125(28): 6096-6108, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34240862

RESUMO

Cytidine ribonucleosides were furnished at O5' with fixed-charge 6-trimethylammoniumhexan-1-aminecarbonyl tags and studied by UV-vis photodissociation action spectroscopy in the gas phase to probe isolated nucleobase chromophores in their neutral, protonated, and hydrogen-adduct radical forms. The action spectrum of the doubly charged cytidine conjugate showed bands at 310 and 270 nm that were assigned to the N3- and O2-protonated cytosine tautomers formed by electrospray, respectively. In contrast, cytidine conjugates coordinated to dibenzo-18-crown-6-ether (DBCE) in a noncovalent complex were found to strongly favor protonation at N3, forming a single-ion tautomer. This allowed us to form cytidine N3-H radicals by electron transfer dissociation of the complex and study their action spectra. Cytidine radicals showed only very weak absorption in the visible region of the spectrum for dipole-disallowed transitions to the low (A and B) excited states. The main bands were observed at 360, 300, and 250 nm that were assigned with the help of theoretical vibronic spectra obtained by time-dependent density functional theory calculations of multiple (>300) radical vibrational configurations. Collision-induced dissociations of cytidine radicals proceeded by major cleavage of the N1-C1' glycosidic bond leading to loss of cytosine and competitive loss of N3-hydrogen atom. These dissociations were characterized by calculations of transition-state structures and energies using combined Born-Oppenheimer molecular dynamics and DFT calculations. Overall, cytidine radicals were found to be kinetically and thermodynamically more stable than previously reported analogous adenosine and guanosine radicals.

10.
Phys Chem Chem Phys ; 22(29): 16831-16842, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666959

RESUMO

Hydrogen-rich cation radicals (GATT + 2H)+˙ and (AGTT + 2H)+˙ represent oligonucleotide models of charged hydrogen atom adducts to DNA. These tetranucleotide cation radicals were generated in the gas phase by one-electron reduction of the respective (GATT + 2H)2+ and (AGTT + 2H)2+ dications in which the charging protons were placed on the guanine and adenine nucleobases. We used wavelength-dependent UV/Vis photodissociation in the valence-electron excitation region of 210-700 nm to produce action spectra of (GATT + 2H)+˙ and (AGTT + 2H)+˙ that showed radical-associated absorption bands in the near-UV (330 nm) and visible (400-440 nm) regions. Born-Oppenheimer molecular dynamics and density-functional theory calculations were used to obtain and rank by energy multiple (GATT + 2H) dication and cation-radical structures. Time-dependent density functional theory (TD-DFT) calculations of excited-state energies and electronic transitions in (GATT + 2H)+˙ were augmented by vibronic spectra calculations at 310 K for selected low-energy cation radicals to provide a match with the action spectrum. The stable product of one-electron reduction was identified as having a 7,8-dihydroguanine cation radical moiety, formed by intramolecular hydrogen atom migration from adenine N-1-H. The hydrogen migration was calculated to have a transition state with a low activation energy, Ea = 96.5 kJ mol-1, and positive activation entropy, ΔS‡ = 75 J mol-1 K-1. This allowed for a fast isomerization of the primary reduction products on the ion-trap time scale of 150 ms that was substantially accelerated by highly exothermic electron transfer.


Assuntos
Adenina/química , Cátions/química , Radicais Livres/química , Guanina/química , Análise Espectral , Repetições de Microssatélites
11.
J Phys Chem A ; 124(35): 7101-7112, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32786974

RESUMO

Oxidation of nontraditional nucleobases 1-methylcytosine (hachimoji base S) and isoguanine (hachimoji base B) in gas-phase ternary complexes with CuII(terpyridine)2+ formed cation radicals that were characterized by tandem mass spectrometry, UV-vis photodissociation action spectroscopy in the 210-700 nm region, and ab initio calculations up to the CCSD(T)/complete basis set level of theory. Oxidation of S was accompanied by exothermic isomerization in the 1-methylcytosine ion (1+•), forming 1-methylene-2-hydroxy-4-aminopyrimidine cation radical (9+•) as a noncanonical distonic isomer of the nucleobase. Ion 9+• was characterized by deuterium exchange experiments and provided a matching UV-vis action spectrum with the vibronic absorption spectrum from time-dependent density functional theory calculations. Oxidation of B resulted in the formation of a canonical isoguanine cation radical (12+•) as judged from the match of the experimental action spectrum with the calculated vibronic absorption spectrum. The calculated adiabatic ionization energies of canonical S and B, 8.51 and 7.76 eV, respectively, indicated exothermic electron transfer from B to S+• to proceed in an ionized base pair. Contrasting this, the lowest energy tautomer of ionized S (9+•) had a low adiabatic recombination energy, REadiab = 5.70 eV, that would prevent it from oxidizing other nucleobases. Recombination energies of several nucleobase tautomers are reported and discussed.

12.
Angew Chem Int Ed Engl ; 59(20): 7772-7777, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045506

RESUMO

Adenosine radicals tagged with a fixed-charge group were generated in the gas phase and structurally characterized by tandem mass spectrometry, deuterium labeling, and UV/Vis action spectroscopy. Experimental results in combination with Born-Oppenheimer molecular dynamics, ab initio, and excited-state calculations led to unambiguous assignment of adenosine radicals as N-7 hydrogen atom adducts. The charge-tagged radicals were found to be electronically equivalent to natural DNA nucleoside radicals.

13.
Phys Chem Chem Phys ; 21(4): 2046-2056, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30638233

RESUMO

Non-covalent complexes of the short amyloid peptide motif Gly-Asn-Asn-Gln-Gln-Asn-Tyr (GNNQQNY) with peptide counterparts that were tagged with a diazirine ring at the N-termini (*GNNQQNY) were generated as singly charged ions in the gas phase. Specific laser photodissociation (UVPD) of the diazirine tag in the gas-phase complexes at 355 nm generated transient carbene intermediates that underwent covalent cross-linking with the target GNNQQNY peptide. The crosslinking yields ranged between 0.8 and 4.5%, depending on the combinations of peptide C-terminal amides and carboxylates. The covalent complexes were analyzed by collision-induced dissociation tandem mass spectrometry (CID-MS3), providing distributions of cross-links at the target peptide amino acid residues. A general preference for cross-linking at the target peptide Gln-4-Gln-5-Asn-6-Tyr-7 segment was observed. Born-Oppenheimer molecular dynamics calculations were used to obtain 100 ps trajectories for nine lowest free-energy conformers identified by ωB97X-D/6-31+G(d,p) gradient geometry optimizations. The trajectories were analyzed for close contacts between the incipient carbene atom and the X-H bonds in the target peptide. The close-contact analysis pointed to the Gln-5 and Tyr-7 residues as the most likely sites of cross-linking, consistent with the experimental CID-MS3 results. Non-covalent binding in the amide complexes was evaluated by DFT calculations of structures and energies. Although antiparallel arrangements of the GNNQQNY and *GNNQQNY peptides were favored in low-energy gas-phase and solvated complexes, the conformations and peptide-peptide interface surfaces were found to differ from the secondary structure of the dry interface in GNNQQNY motifs of amyloid aggregates.


Assuntos
Fragmentos de Peptídeos/química , Amidas/química , Amiloide/química , Reagentes de Ligações Cruzadas , Cinética , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Estrutura Secundária de Proteína
14.
J Phys Chem A ; 123(15): 3272-3284, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30912657

RESUMO

Cation radicals of guanine (G•+), 9-methylguanine (MG•+), and guanosine (rG•+) were generated by dissociative oxidation of gas-phase copper complexes and characterized by UV-vis photodissociation action spectra and ab initio calculations. Comparison of the action spectra of G•+ with the calculated vibronic absorption spectra of several cation radical tautomers showed the best match for the canonical 6-oxo-N-9-H structure (G1•+). The formation of G1•+ was favored by the stability of its precursor CuII ion complexes in solution and the gas phase. G1•+ was the marginally lowest-energy guanine tautomer according to CCSD(T) calculations extrapolated to the complete basis set limit (CBS). A canonical 6-oxo structure (MG1•+) was also assigned to the 9-methylguanine cation radical on the basis of a match between the action spectrum and the calculated vibronic absorption spectra. MG1•+ was calculated by CCSD(T)/CBS to be marginally less stable than the 6-OH enol tautormer, but its formation was favored by the superior stability of its precursor CuII ion complexes in solution and the gas phase. Action spectroscopy allowed us to assign the canonical 6-oxo structure (rG1•+) to the gas-phase guanosine cation radicals that were formed as the lowest-energy tautomers. The absorption bands in the action spectra were assigned on the basis of time-dependent density functional theory calculations that were benchmarked on equation-of-motion coupled cluster calculations of G•+.

15.
Clin Chem ; 64(4): 690-696, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339442

RESUMO

BACKGROUND: Deficiency of lysosomal acid lipase (LAL) causes Wolman disease and cholesterol ester storage disease. With the recent introduction of enzyme replacement therapy to manage LAL deficiency comes the need for a reliable assay of LAL enzymatic activity that can be applied to dried blood spots (DBS). METHODS: We prepared and tested a library of analogs of palmitoyl 4-methylumbelifferyl esters to find a highly active and specific substrate for LAL in DBS. The LAL assay was optimized leading to both LC-MS/MS and fluorometric assay of LAL. We tested the new assay on DBS from healthy and LAL-deficient patients. RESULTS: The ester formed between palmitic acid and 4-propyl-8-methyl-7-hydroxycoumarin (P-PMHC) was found to be >98% selective for LAL in DBS based on the sensitivity of its activity to the LAL-specific inactivator Lalistat-2 and the fact that the activity was close to zero using DBS from patients previously shown to be LAL-deficient. Use of P-PMHC and heavy isotope-labeled internal standard with optimized assay conditions led to an approximately 2-fold increase in the specific activity of LAL compared with the previously reported LAL assay. Patients deficient in LAL were readily distinguished from normal persons with the new LAL assay using UPLC-MS/MS or fluorometric assay platforms. CONCLUSIONS: The new assay can measure LAL in DBS with a single measurement compared with the previous method involving 2 assays done in parallel.


Assuntos
Esterol Esterase/sangue , Adulto , Estudos de Casos e Controles , Pré-Escolar , Doença do Armazenamento de Colesterol Éster/enzimologia , Cromatografia Líquida/métodos , Teste em Amostras de Sangue Seco , Fluorometria , Humanos , Reprodutibilidade dos Testes , Especificidade por Substrato , Espectrometria de Massas em Tandem/métodos , Doença de Wolman/enzimologia
16.
Mol Genet Metab ; 125(1-2): 59-63, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006231

RESUMO

BACKGROUND: With ongoing efforts to develop improved treatments for Sanfilippo Syndrome Type A (MPS-IIIA), a disease caused by the inability to degrade heparan sulfate in lysosomes, we sought to develop an enzymatic activity assay for the relevant enzyme, sulfamidase, that uses dried blood spots (DBS). METHODS: We designed and synthesized a new sulfamidase substrate that can be used to measure sulfamidase activity in DBS using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Sulfamidase activity was readily detected in DBS using the new substrate and LC-MS/MS. Sulfamidase activity showed acceptable linearity proportional to the amount of enzyme and reaction time. Sulfamidase activity in 238 random newborns was well elevated compared to the range of activities measured in DBS from 8 patients previously confirmed to have MPS-IIIA. CONCLUSIONS: This is the first report of an assay capable of detecting sulfamidase in DBS. The new assay could be useful in diagnosis and potentially for newborn screening of MPS-IIIA.


Assuntos
Teste em Amostras de Sangue Seco , Heparitina Sulfato/metabolismo , Hidrolases/sangue , Mucopolissacaridose III/sangue , Cromatografia Líquida , Heparitina Sulfato/genética , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/enzimologia , Lisossomos/patologia , Mucopolissacaridose III/patologia , Triagem Neonatal/métodos , Espectrometria de Massas em Tandem
17.
Mass Spectrom Rev ; : e21815, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36218264
18.
Chemistry ; 24(37): 9259-9263, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29723425

RESUMO

The small neuroprotective peptide Cys-Ala-Gln-Lys (CAQK) was selectively tagged with a diazirine group and its photochemical cross-linking was studied with model target peptides. Experimental results in combination with Born-Oppenheimer molecular dynamics revealed the structural preferences for binding to the amino acid residues in the target peptides. Effects of the target peptide sequence and N- and C-terminal modifications are discussed.

19.
J Phys Chem A ; 122(8): 2069-2078, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425439

RESUMO

(2,2'-Bipyridine)M═O+ ions (M = Cu, Ni, Co) were generated by collision-induced dissociation and near-UV photodissociation of readily available [(2,2'-bipyridine)MII(NO3)]+ ions in the gas phase, and their structure was confirmed by ion-molecule reactions combined with isotope labeling. Upon storage in a quadrupole ion trap, the (2,2'-bipyridine)M═O+ ions spontaneously added water, and the formed [(2,2'-bipyridine)M═O + H2O]+ complexes eliminated OH upon further near-UV photodissociation. This reaction sequence can be accomplished at a single laser wavelength in the range of 260-340 nm to achieve stoichiometric homolytic cleavage of gaseous water. Structures, spin states, and electronic excitations of the metal complexes were characterized by ion-molecule reactions using 2H and 18O labeling, photodissociation action spectroscopy, and density functional theory calculations.

20.
Clin Chem ; 63(6): 1118-1126, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28428354

RESUMO

BACKGROUND: We expanded the use of tandem mass spectrometry combined with liquid chromatography (LC-MS/MS) for multiplex newborn screening of seven lysosomal enzymes in dried blood spots (DBS). The new assays are for enzymes responsible for the mucopolysaccharidoses (MPS-I, -II, -IIIB, -IVA, -VI, and -VII) and type 2 neuronal ceroid lipofuscinosis (LINCL). METHODS: New substrates were prepared and characterized for tripeptidyl peptidase 1 (TPP1), α-N-acetylglucosaminidase (NAGLU), and lysosomal ß-glucuronidase (GUSB). These assays were combined with previously developed assays to provide a multiplex LC-MS/MS assay of 7 lysosomal storage diseases. Multiple reaction monitoring of ion dissociations for enzyme products and deuterium-labeled internal standards was used to quantify the enzyme activities. RESULTS: Deidentified DBS samples from 62 nonaffected newborns were analyzed to simultaneously determine (run time 2 min per DBS) the activities of TPP1, NAGLU, and GUSB, along with those for α-iduronidase (IDUA), iduronate-2-sulfatase (I2S), N-acetylgalactosamine-6-sulfatase (GALNS), and N-acetylgalactosamine-4-sulfatase (ARSB). The activities measured in the 7-plex format showed assay response-to-blank-activity ratios (analytical ranges) of 102-909 that clearly separated healthy infants from affected children. CONCLUSIONS: The new multiplex assay provides a robust comprehensive newborn screening assay for the mucopolysaccharidoses. The method has been expanded to include additional lysosomal storage diseases.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Doenças por Armazenamento dos Lisossomos/enzimologia , Mucopolissacaridoses/metabolismo , Triagem Neonatal/métodos , Lipofuscinoses Ceroides Neuronais/enzimologia , Cromatografia Líquida , Humanos , Recém-Nascido , Doenças por Armazenamento dos Lisossomos/sangue , Doenças por Armazenamento dos Lisossomos/diagnóstico , Mucopolissacaridoses/sangue , Lipofuscinoses Ceroides Neuronais/sangue , Lipofuscinoses Ceroides Neuronais/diagnóstico , Espectrometria de Massas em Tandem , Tripeptidil-Peptidase 1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa