Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 21(10): 4071-84, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25649151

RESUMO

Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrP(C)) to the disease-related scrapie isoform (PrP(Sc)). Copper(II) coordination to PrP(C) has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrP(C). In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60-114) [Ac = acetyl] as a model for the whole N-terminus of the PrP(C) metal-binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide-bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide-bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal-binding-affinity order observed in our previous studies.


Assuntos
Histamina/química , Peptídeos/química , Príons/química , Dicroísmo Circular , Cobre/química , Espectrometria de Massas , Ligação Proteica , Raios Ultravioleta
2.
J Inorg Biochem ; 203: 110927, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810042

RESUMO

Interaction of copper(II) and nickel(II) ions with the Ac-PHAAAGTHSMKHM-NH2 tridecapeptide containing the His85, His96 and His111 binding sites of human prion protein has been studied by various techniques. pH-potentiometry, UV-Vis and circular dichroism spectroscopy were applied to study the stoichiometry, stability and structure of the copper(II) and nickel(II) complexes, while HPLC-MS and MS/MS were used for identifying the products of copper(II) catalyzed oxidation. The copper binding ability of shorter fragments, namely the nonapeptide Ac-PHAAAGTHS-NH2 and pentapeptide Ac-PHAAA-NH2 have also been studied. The tridecapeptide is able to bind three equivalent of copper(II) ion, since the histidine residues behave as independent metal binding sites. Nevertheless, the metal binding ability of histidine residue mimicking the octarepeat domain (His85) is decreased, while the other parts of the peptide mimicking the histidines outside the octarepeat domain bind the copper ions in comparable concentration. On the other hand, this peptide is able to coordinate only two equivalents of nickel ion on the domains outside the octarepeat region. Furthermore the His96 binding site is more effective for the nickel ions. Both histidine and methionine residues are sensitive for oxidation, the oxidation of these residues are proved, and in the case of the histidine residues follows the order His96 > His85 ≫ His111.


Assuntos
Complexos de Coordenação/química , Cobre/química , Oligopeptídeos/química , Proteínas Priônicas/química , Sítios de Ligação , Histidina/química , Humanos , Níquel/química , Oligopeptídeos/metabolismo , Oxirredução , Proteínas Priônicas/metabolismo , Ligação Proteica
3.
J Inorg Biochem ; 112: 17-24, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542592

RESUMO

Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of four peptide fragments of human prion protein have been studied by potentiometric, UV-vis and circular dichroism spectroscopic techniques. One peptide contained three histidyl residues: HuPrP(84-114) with H85 inside and H96, H111 outside the octarepeat domain. The other three peptides contained two histidyl residues; H96 and H111 for HuPrP(91-115) and HuPrP(84-114)H85A while HuPrP(84-114)H96A contained the histidyl residues at positions 85 and 111. It was found that both histidines of the latter peptides can simultaneously bind copper(II) and nickel(II) ions and dinuclear mixed metal complexes can exist in slightly alkaline solution. One molecule of the peptide with three histidyl residues can bind two copper(II) and one nickel(II) ions. H85 and H111 were identified as the major copper(II) and H96 as the preferred nickel(II) binding sites in mixed metal species. The studies on the zinc(II)-PrP peptide binary systems revealed that zinc(II) ions can coordinate to the 31-mer PrP peptide fragments in the form of macrochelates with two or three coordinated imidazol-nitrogens but the low stability of these complexes cannot prevent the hydrolysis of the metal ion in slightly alkaline solution. These data provide further support for the outstanding affinity of copper(II) ions towards the peptide fragments of prion protein but the binding of nickel(II) can significantly modify the distribution of copper(II) among the available metal binding sites.


Assuntos
Cloretos/química , Complexos de Coordenação/química , Cobre/química , Histidina/análogos & derivados , Níquel/química , Fragmentos de Peptídeos/química , Príons/química , Compostos de Zinco/química , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Complexos de Coordenação/síntese química , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/síntese química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Precursores de Proteínas/química , Espectrofotometria Ultravioleta
4.
J Inorg Biochem ; 104(8): 885-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20494446

RESUMO

Nickel(II) complexes of the peptide fragments of human prion protein containing histidyl residues both inside and outside the octarepeat domain have been studied by the combined application of potentiometric, UV-visible and circular dichroism spectroscopic methods. The imidazole-N donor atoms of histidyl residues are the exclusive metal binding sites below pH 7.5, but the formation of stable macrochelates was characteristic only for the peptide HuPrP(76-114) containing four histidyl residues. Yellow colored square planar complexes were obtained above pH 7.5-8 with the cooperative deprotonation of three amide nitrogens in the [N(im),N(-),N(-),N(-)] coordination mode. It was found that the peptides can bind as many nickel(II) ions as the number of independent histidyl residues. All data supported that the complex formation processes of nickel(II) are very similar to those of copper(II), but with a significantly reduced stability for nickel(II), which shifts the complex formation reactions into the slightly alkaline pH range. The formation of coordination isomers was characteristic of the mononuclear complexes with a significant preference for the nickel(II) binding at the histidyl sites outside the octarepeat domain. The results obtained for the two-histidine fragments of the protein, HuPrP(91-115), HuPrP(76-114)H85A and HuPrP(84-114)H96A, made it possible to compare the binding ability of the His96 and His111 sites. These data reveal a significant difference in the nickel(II) and copper(II) binding sites of the peptides: His96 was found to predominate almost completely for nickel(II) ions, while the opposite order, but with comparable concentrations, was reported for copper(II).


Assuntos
Histidina/química , Níquel/química , Peptídeos/química , Príons/química , Cobre/química , Humanos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa