Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 38(1): e14154, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37489292

RESUMO

Human water use combined with a recent megadrought have reduced river and stream flow through the southwest United States and led to periodic drying of formerly perennial river segments. Reductions in snowmelt runoff and increased extent of drying collectively threaten short-lived, obligate aquatic species, including the endangered Rio Grande silvery minnow (Hybognathus amarus). This species is subject to boom-and-bust population dynamics, under which large fluctuations in abundance are expected to lower estimates of effective population size and erode genetic diversity over time. Rates of diversity loss are also affected by additions of hatchery-origin fish used to supplement the wild population. We used demographic and genetic data from wild and hatchery individuals to examine the relationship of genetic diversity and effective population size to abundance over the last two decades. Genetic diversity was low during the early 2000s, but diversity and demographic metrics stabilized after the hatchery program was initiated and environmental conditions improved. Yet, from 2017 onward, allelic diversity declined (Cohen's d = 1.34) and remained low despite hatchery stocking and brief wild population recovery. Across the time series, single-sample estimates of effective population size based on linkage disequilibrium (LD Ne ) were positively associated (r = 0.53) with wild abundance and total abundance, but as the proportion of hatchery-origin spawners increased, LD Ne declined (r = -0.55). Megadrought limited wild spawner abundance and precluded refreshment of hatchery brood stocks with wild fish; hence, we predict a riverine population increasingly dominated by hatchery-origin individuals and accelerated loss of genetic diversity despite supplementation. We recommend an adaptive and accelerated management plan that integrates river flow management and hatchery operations to slow the pace of genetic diversity loss exacerbated by megadrought.


El uso humano del agua, combinado con una megasequía reciente, ha reducido el flujo de los ríos y arroyos en el suroeste de los Estados Unidos y ha provocado la seca periódica de segmentos de ríos que antes eran perennes. Las reducciones en la escorrentía del deshielo y el aumento de la sequía amenazan colectivamente a especies obligatoriamente acuáticas de vida corta, incluyendo la amenazada carpa chamizal (Hybognathus amarus). Esta especie está sujeta a una dinámica poblacional de explosión y colapso, bajo la cual se espera que grandes fluctuaciones en la abundancia reduzcan las estimaciones del tamaño efectivo de la población y erosionen la diversidad genética con el tiempo. Las tasas de pérdida de la diversidad también se ven afectadas por la adición de peces procedentes de criaderos usados para suplementar la población silvestre. Utilizamos datos demográficos y genéticos de individuos silvestres y de criaderos para examinar la relación entre la diversidad genética y el tamaño efectivo de la población con la abundancia durante las últimas dos décadas. La diversidad genética fue baja a principios de los 2000, pero las métricas de diversidad y demografía estabilizaron después de que se inició el programa de criadero y mejoraron las condiciones ambientales. Sin embargo, a partir de 2017, la diversidad alélica disminuyó (d de Cohen = 1,34) y se mantuvo baja a pesar de la suplementación con individuos de criaderos y la breve recuperación de la población silvestre. A lo largo del tiempo, las estimativas de muestras individuales del tamaño efectivo de la población basados en el desequilibrio de ligamiento (LD Ne) estaban asociadas positivamente (r = 0,53) con la abundancia silvestre y la abundancia total, pero a medida que la proporción de desovadores originados en criaderos aumentó, el LD Ne disminuyó (r = -0,55). La megasequía limitó la abundancia de desovadores silvestres e impidió el reabastecimiento de las poblaciones en cautiverio con peces silvestres; por lo tanto, predecimos una población ribereña cada vez más dominada por individuos procedentes de criaderos y una pérdida acelerada de diversidad genética a pesar de la suplementación. Recomendamos un plan de gestión adaptativo y acelerado que integre la gestión del caudal del río y las operaciones de criaderos para frenar el ritmo de pérdida de diversidad genética exacerbada por la megasequía.


Assuntos
Cyprinidae , Variação Genética , Humanos , Animais , Conservação dos Recursos Naturais , Cyprinidae/genética , Rios , Cruzamento
2.
Mol Ecol ; 32(2): 316-334, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36321869

RESUMO

Many long-term genetic monitoring programmes began before next-generation sequencing became widely available. Older programmes can now transition to new marker systems usually consisting of 1000s of SNP loci, but there are still important questions about comparability, precision, and accuracy of key metrics estimated using SNPs. Ideally, transitioned programmes should capitalize on new information without sacrificing continuity of inference across the time series. We combined existing microsatellite-based genetic monitoring information with SNP-based microhaplotypes obtained from archived samples of Rio Grande silvery minnow (Hybognathus amarus) across a 20-year time series to evaluate point estimates and trajectories of key genetic metrics. Demographic and genetic monitoring bracketed multiple collapses of the wild population and included cases where captive-born repatriates comprised the majority of spawners in the wild. Even with smaller sample sizes, microhaplotypes yielded comparable and in some cases more precise estimates of variance genetic effective population size, multilocus heterozygosity and inbreeding compared to microsatellites because many more microhaplotype loci were available. Microhaplotypes also recorded shifts in allele frequencies associated with population bottlenecks. Trends in microhaplotype-based inbreeding metrics were associated with the fraction of hatchery-reared repatriates to the wild and should be incorporated into future genomic monitoring. Although differences in accuracy and precision of some metrics were observed between marker types, biological inferences and management recommendations were consistent.


Assuntos
Genética Populacional , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Frequência do Gene , Endogamia , Repetições de Microssatélites
3.
Bioscience ; 73(7): 479-493, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37841229

RESUMO

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of information about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective studies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration.

4.
J Hered ; 114(5): 470-487, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37347974

RESUMO

Sex determination systems and genetic sex differentiation across fishes are highly diverse but are unknown for most Cypriniformes, including Rio Grande silvery minnow (Hybognathus amarus). In this study, we aimed to detect and validate sex-linked markers to infer sex determination system and to demonstrate the utility of combining several methods for sex-linked marker detection in nonmodel organisms. To identify potential sex-linked markers, Nextera-tagmented reductively amplified DNA (nextRAD) libraries were generated from 66 females, 64 males, and 60 larvae of unknown sex. These data were combined with female and male de novo genomes from Nanopore long-read sequences. We identified five potential unique male nextRAD-tags and one potential unique male contig, suggesting an XY sex determination system. We also identified two single-nucleotide polymorphisms (SNPs) in the same contig with values of FST, allele frequencies, and heterozygosity conforming with expectations of an XY system. Through PCR we validated the marker containing the sex-linked SNPs and a single nextRAD-tag sex-associated marker but it was not male specific. Instead, more copies of this locus in the male genome were suggested by enhanced amplification in males. Results are consistent with an XY system with low differentiation between sex-determining regions. Further research is needed to confirm the level of differentiation between the sex chromosomes. Nonetheless, this study highlighted the power of combining reduced representation and whole-genome sequencing for identifying sex-linked markers, especially when reduced representation sequencing does not include extensive variation between sexes, either because such variation is not present or not captured.


Assuntos
Cipriniformes , Masculino , Animais , Feminino , Cipriniformes/genética , Cromossomo Y , Genoma , Cromossomos Sexuais/genética , Deriva Genética , Marcadores Genéticos , Processos de Determinação Sexual/genética
5.
Am Nat ; 200(2): 275-291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35905398

RESUMO

AbstractPatterns of genetic diversity and effective size should be predicted by life history traits (intrinsic), landscape properties (extrinsic), and population dynamics. Theoretical models portray complicated relationships among population subdivision, rates of extirpation and recolonization, and metapopulation genetic effective size (metaNe) but make simplifying assumptions about effects of intrinsic and extrinsic factors. Using previously published data sets, we compared estimates of genetic effective size to demographic time-series data gathered for nine dominant species in a desert stream fish community. These species occupy a common desert stream network and experience the same disturbance regime but differ in abundance, distribution, and life history traits that should affect reproduction, dispersal, local persistence, and genetic diversity patterns. Measures of genetic effective size were positively related to network-wide abundance and mean adult density across species and were negatively related to extirpation probability. Comparative data supported the theoretical prediction that population subdivision decreases metapopulation genetic effective size relative to panmictic populations of the same size. Estimates of metaNe reflected differences in intrinsic traits and population dynamics across species measured over ecological timescales. This comparative study exemplifies why ecological differences are important considerations when seeking to preserve genetic diversity.


Assuntos
Genética Populacional , Rios , Animais , Ecossistema , Peixes/genética , Variação Genética , Dinâmica Populacional , Reprodução
6.
Mol Ecol ; 26(2): 471-489, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27864911

RESUMO

Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIß and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIß with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.


Assuntos
Cyprinidae/genética , Cyprinidae/parasitologia , Genes MHC da Classe II , Variação Genética , Parasitos , Animais , Mudança Climática , Espécies em Perigo de Extinção , Repetições de Microssatélites , Sudoeste dos Estados Unidos , Análise Espaço-Temporal
7.
Mol Ecol ; 26(10): 2687-2697, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28247452

RESUMO

Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise FST ) while explicitly accounting for intraspecific demographic influences on effective population size (Ne ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of Ne was a strong predictor of pairwise FST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases.


Assuntos
Ecossistema , Peixes/genética , Variação Genética , Genética Populacional , Animais , Repetições de Microssatélites , New Mexico , Densidade Demográfica , Rios
8.
J Hered ; 107(6): 567-72, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27225935

RESUMO

As with many endangered, long-lived iteroparous fishes, survival of razorback sucker depends on a management strategy that circumvents recruitment failure that results from predation by non-native fishes. In Lake Mohave, AZ-NV, management of razorback sucker centers on capture of larvae spawned in the lake, rearing them in off-channel habitats, and subsequent release ("repatriation") to the lake when adults are sufficiently large to resist predation. The effects of this strategy on genetic diversity, however, remained uncertain. After correction for differences in sample size among groups, metrics of mitochondrial DNA (mtDNA; number of haplotypes, N H , and haplotype diversity, H D ) and microsatellite (number of alleles, N A , and expected heterozygosity, H E ) diversity did not differ significantly between annual samples of repatriated adults and larval year-classes or among pooled samples of repatriated adults, larvae, and wild fish. These findings indicate that the current management program thus far maintained historical genetic variation of razorback sucker in the lake. Because effective population size, N e , is closely tied to the small census population size (N c = ~1500-3000) of razorback sucker in Lake Mohave, this population will remain at risk from genetic, as well as demographic risk of extinction unless N c is increased substantially.


Assuntos
Espécies em Perigo de Extinção , Peixes/genética , Variação Genética , Genética Populacional , Alelos , Animais , DNA Mitocondrial , Repetições de Microssatélites
9.
Ecology ; 96(12): 3213-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909427

RESUMO

Disruption of natural flow regimes, nutrient pollution, and other consequences of human population growth and development have impacted most major rivers of the world. Alarming losses of aquatic biodiversity coincide with human-caused river alteration, but effects of biotic homogenization on aquatic ecosystem processes are not as well documented. This is because unaltered systems for comparison are scarce, and some ecosystem-wide effects may take decades to manifest. We evaluated aquatic ecosystem responses to extensive river- floodplain engineering and nutrient addition in the Rio Grande of southwestern North America as revealed by changes in trophic structure of, and resource availability to, the fish community. Stable Isotope Analysis (SIA) was conducted on museum-preserved fishes collected over a 70-year period of intensive river management and exponential human population growth. Trophic complexity and resource heterogeneity for fish consumers (measured as "isotopic niche breadth") decreased following sediment deprivation and channelization, and these effects persist into the present. Increased nutrient inputs led to δ15N enrichment in the entire fish community at all affected sites, and a shift to autochthonous sources of carbon at the most proximal site downstream of wastewater release, probably via bottom-up transfer. Overall, retrospective SIA of apex consumers suggests radical change and functional impairment of a floodplain river ecosystem already marked by significant biodiversity loss.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Peixes/fisiologia , Atividades Humanas , Rios , Animais , Interpretação Estatística de Dados , Peixes/metabolismo , Isótopos , New Mexico , Fatores de Tempo , Poluição da Água
10.
Mol Ecol ; 23(23): 5663-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25327780

RESUMO

We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage.


Assuntos
Conservação dos Recursos Naturais , Peixes/genética , Variação Genética , Genética Populacional , Animais , Biota , Meio Ambiente , Peixes/classificação , Repetições de Microssatélites , América do Norte , Rios , Análise de Sequência de DNA
11.
J Hered ; 105(3): 407-15, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558102

RESUMO

Genetic determinants of seasonal reproduction are not fully understood but may be important predictors of organism responses to climate change. We used a comparative approach to study the evolution of seasonal timing within a fish community in a natural common garden setting. We tested the hypothesis that allelic length variation in the PolyQ domain of a circadian rhythm gene, Clock1a, corresponded to interspecific differences in seasonal reproductive timing across 5 native and 1 introduced cyprinid fishes (n = 425 individuals) that co-occur in the Rio Grande, NM, USA. Most common allele lengths were longer in native species that initiated reproduction earlier (Spearman's r = -0.70, P = 0.23). Clock1a allele length exhibited strong phylogenetic signal and earlier spawners were evolutionarily derived. Aside from length variation in Clock1a, all other amino acids were identical across native species, suggesting functional constraint over evolutionary time. Interestingly, the endangered Rio Grande silvery minnow (Hybognathus amarus) exhibited less allelic variation in Clock1a and observed heterozygosity was 2- to 6-fold lower than the 5 other (nonimperiled) species. Reduced genetic variation in this functionally important gene may impede this species' capacity to respond to ongoing environmental change.


Assuntos
Adaptação Fisiológica/genética , Relógios Biológicos/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Cyprinidae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Mudança Climática , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Filogenia , Estações do Ano , Análise de Sequência de DNA
12.
J Hered ; 104(3): 437-46, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519867

RESUMO

Captive breeding and rearing are central elements in conservation, management, and recovery planning for many endangered species including Rio Grande Silvery Minnow, a North American freshwater cyprinid. Traditionally, the sole purpose of hatcheries was to produce as many fish as feasible for stocking and harvest. Production quotas are also an important consideration in hatchery programs for endangered species, but they must also maintain and maximize genetic diversity of fish produced through implementation of best breeding practices. Here, we assessed genetic outcomes and measures of productivity (number of eggs and larval viability) for three replicates of three mating designs that are used for this small, pelagic-spawning fish. These were 1) monogamous mating, 2) hormone-induced communal spawning, and 3) environmentally cued communal spawning. A total of 180 broodstock and 450 progeny were genotyped. Genetic diversity and egg productivity did not differ significantly among spawning designs (H e : F = 0.52, P = 0.67; H o : F = 0.12, P = 0.89; number of eggs: F = 3.59, P = 0.09), and there was evidence for variance in reproductive success among individuals in all three designs. Allelic richness declined from the broodstock to progeny generation in all breeding designs. There was no significant difference in the genetic effective size (regardless of the method used) among designs. Significantly more viable eggs were produced in environmentally cued communal spawn compared to the alternative strategies (F = 5.72, P = 0.04), but this strategy is the most difficult to implement.


Assuntos
Cruzamento/métodos , Cyprinidae/genética , Variação Genética , Animais , Espécies em Perigo de Extinção , Feminino , Água Doce , Masculino , Óvulo , Densidade Demográfica
13.
Mitochondrial DNA B Resour ; 8(8): 809-814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539012

RESUMO

Macrhybopsis tetranema and Oncorhynchus gilae are fish species endemic to the Southwestern United States. We present the complete mitochondrial genomes for these species. Each genome consisted of 13 protein-coding genes, two ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and the control region (D-loop). Mitogenome lengths were 16,916 base pairs (bp) for M. tetranema, and 16,976 bp for O. gilae. The GC content was 41% for M. tetranema and 46% for O. gilae. The relationships of M. tetranema and O. gilae were consistent with previous phylogenetic analyses.

14.
G3 (Bethesda) ; 13(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37466215

RESUMO

North American minnows (Cypriniformes: Leuciscidae) comprise a diverse taxonomic group, but many members, particularly those inhabiting deserts, face elevated extinction risks. Despite conservation concerns, leuciscids remain under sampled for reference assemblies relative to other groups of freshwater fishes. Here, we present 2 chromosome-scale reference genome assemblies spikedace (Meda fulgida) and loach minnow (Tiaroga cobitis) using PacBio, Illumina and Omni-C technologies. The complete assembly for spikedace was 882.1 Mb in total length comprised of 83 scaffolds with N50 = 34.8 Mb, L50 = 11, N75 = 32.3 Mb, and L75 = 18. The complete assembly for loach minnow was 1.3 Gb in total length comprised of 550 scaffolds with N50 = 48.6 Mb, L50 = 13, N75 = 42.3 Mb, and L75 = 20. Completeness assessed via Benchmarking Universal Single-Copy Orthologues (BUSCO) metrics using the Actinopterygii BUSCO database showed ∼97% for spikedace and ∼98% for loach minnow of complete BUSCO proportions. Annotation revealed approximately 32.58 and 29.04% of spikedace and loach minnow total genome lengths to be comprised of protein-coding genes, respectively. Comparative genomic analyses of these endangered and co-distributed fishes revealed widespread structural variants, gene family expansions, and evidence of positive selection in both genomes.


Assuntos
Cyprinidae , Peixes , Animais , Peixes/genética , Cromossomos , Genoma , Cyprinidae/genética , Anotação de Sequência Molecular
15.
Fish Shellfish Immunol ; 30(6): 1275-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21463692

RESUMO

The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater fish in the world, but some are imperiled. Despite considerable species richness and the long evolutionary history of the family, there are very few reports of MHC sequences (apart from a few model species), and no sequences are reported from endemic North American cyprinids (subfamily Leuciscinae). Here we isolate and characterize the MH Class II beta genes from complementary DNA and genomic DNA of the non-model, endangered Rio Grande silvery minnow (Hybognathus amarus), a North American cyprinid. Phylogenetic reconstruction revealed two groups of divergent MH alleles that are paralogous to previously described loci found in deeply divergent cyprinid taxa including common carp, zebrafish, African large barb and bream. Both groups of alleles were under the influence of diversifying selection yet not all individuals had alleles belonging to both allelic groups. We concluded that the general organization and pattern of variation of MH class II genes in Rio Grande silvery minnow is similar to that identified in other cyprinid fishes studied to date, despite distant evolutionary relationships and evidence of a severe genetic bottleneck.


Assuntos
Cyprinidae/genética , Espécies em Perigo de Extinção , Evolução Molecular , Genes MHC da Classe II/genética , Variação Genética , Filogenia , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
16.
Mol Ecol ; 19(14): 2832-44, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20579288

RESUMO

Genetic monitoring tracks changes in measures of diversity including allelic richness, heterozygosity and genetic effective size over time, and has emerged as an important tool for understanding evolutionary consequences of population management. One proposed application of genetic monitoring has been to estimate abundance and its trajectory through time. Here, genetic monitoring was conducted across five consecutive year for the Pecos bluntnose shiner, a federally threatened minnow. Temporal changes in allele frequencies at seven microsatellite DNA loci were used to estimate variance effective size (N(eV)) across adjacent years in the time series. Likewise, effective size was computed using the linkage disequilibrium method (N(eD)) for each sample. Estimates of N(e) were then compared to estimates of adult fish density obtained from traditional demographic monitoring. For Pecos bluntnose shiner, density (catch-per-unit-effort), N(eV) and N(eD) were positively associated across this time series. Results for Pecos bluntnose shiner were compared to a related and ecologically similar species, the Rio Grande silvery minnow. In this species, density and N(eV) were negatively associated, which suggested decoupling of abundance and effective size trajectories. Conversely, density and N(eD) were positively associated. For Rio Grande silvery minnow, discrepancies among estimates of N(e) and their relationships with adult fish density could be related to effects of high variance in reproductive success in the wild and/or effects of supplementation of the wild population with captive-bred and reared fish. The efficacy of N(e) as a predictor of density and abundance may depend on intrinsic population dynamics of the species and how these dynamics are influenced by the landscape features, management protocols and other factors.


Assuntos
Cyprinidae/genética , Variação Genética , Genética Populacional , Animais , Conservação dos Recursos Naturais , Frequência do Gene , Desequilíbrio de Ligação , Repetições de Microssatélites , Polimorfismo Genético , Densidade Demográfica , Reprodução , Análise de Sequência de DNA
17.
Ecology ; 91(8): 2227-33, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20836444

RESUMO

We propose a framework for hypothesis-testing of stable isotope ratios in ecological studies. Statistical procedures are based on analysis of nested linear models and a residual permutation procedure (RPP) that is employed to evaluate probabilities associated with test statistics. We used simulated examples and a real data set to illustrate the utility and generality of the method. First, we developed a test for differences in centroid location and dispersion of delta13C and delta15N values within and among groups of isotopic data. Second, we evaluated magnitude and direction of change in centroid position (termed "path") of a pair of isotopic samples separated in space/time relative to paths of other paired sample sets. Third, we compared attributes of path trajectories (size, direction, and shape) over sample sets containing more than two samples to provide a quantitative description of how patterns of isotopic ratios change in response to spatial and temporal gradients. Examples are limited to the bivariate case (delta13C-delta15N biplots), but the statistical method can readily be applied to univariate and multivariate cases.


Assuntos
Carbono/química , Carbono/metabolismo , Ecossistema , Modelos Biológicos , Modelos Estatísticos , Isótopos de Carbono
18.
Mitochondrial DNA B Resour ; 5(3): 2368-2370, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33457794

RESUMO

Gila elegans, Hybognathus amarus, and Tiaroga cobitis (Family Cyprinidae, Order Cypriniformes) are endemic and endangered fishes in the southwestern United States. We present complete mitochondrial genomes for each species. Each mitochondrion consisted of 13 protein-coding genes, 2 ribosomal (rRNA) genes, 22 transfer RNA (tRNA) genes, and a single control region (D-loop), and gene order was consistent with other cyprinid fishes. Total genome lengths were 16,593 base pairs (bp) for G. elegans, 16,705 bp for H. amarus, and 16,802 for T. cobitis. The GC content in G. elegans and H. amarus was 44%, but higher in T. cobitis at 48%. Phylogenetic trees were generated to confirm relationships inferred via novel mitogenomes, and best-supported trees were consistent with previous research.

19.
Mol Phylogenet Evol ; 52(2): 406-15, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19341807

RESUMO

The genus Oncorhynchus includes Pacific salmon and trout (anadromous and land-locked) species of the western United States and Mexico. All species and subspecies in this group are threatened, endangered, sensitive, or species of conservation concern in portions of their native ranges. To examine the relationships of the species within Oncorhynchus we sequenced a 768 bp fragment of the protein-encoding ND4 mtDNA region. We included all six recognized subspecies of O. clarki (cutthroat trout), O. gilaegilae (Gila trout) and O. g. apache (Apache trout). Gene trees from likelihood and Bayesian phylogenetic analyses revealed that Salvelinus was the sister group to Oncorhynchus, and as expected based on previous studies, O. clarki was sister to a clade that consisted of O. mykiss plus O. g. gilae and O. g. apache. Within the cutthroat clade (O. clarki), the coastal form O. c. clarki was basal with the Rio Grande cutthroat (O. c. virginalis) most derived. Divergence dating based on a fossil calibration molecular clock showed the oldest clade (mean node age) was O. masou ssp., which diverged roughly 7.6 MYA. Highest probability density intervals for divergence of O. masou overlapped with divergence (6.3 MYA) of Pacific salmon clades ((O. gorbuscha + O. nerka) and (O. tshawytscha + O. kisutch)). The Pacific trout clade ((O. mykiss + O. gilae ssp.) + (O. clarki ssp.)) diverged from the Pacific salmon around 6.3 MYA, with most of the diversification within the O. clarki clade occurring in the last 1 MY.


Assuntos
DNA Mitocondrial/genética , Genética Populacional , Oncorhynchus/genética , Filogenia , Animais , Teorema de Bayes , Funções Verossimilhança , Oncorhynchus/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
20.
PeerJ ; 7: e6149, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30627490

RESUMO

Coastal habitats in Chile are hypothesized to support a number of diadromous fish species. The objective of this study was to document migratory life histories of native galaxiids and introduced salmonids from a wide latitudinal range in Chilean Patagonia (39-48°S). Otolith microchemistry data were analysed using a recursive partitioning approach to test for diadromy. Based on annular analysis of Sr:Ca ratios, a diadromous life history was suggested for populations of native Aplochiton taeniatus, A. marinus, and Galaxias maculatus. Lifetime residency in freshwater was suggested for populations of A. zebra and G. platei. Among introduced salmonids, populations of Oncorhynchus tshawytscha and O. kisutch exhibited patterns consistent with anadromy, whereas the screened population of O. mykiss appeared restricted to freshwater. Salmo trutta exhibited variable patterns suggesting freshwater residency and possibly anadromy in one case. The capacity and geographic scope of hydropower development is increasing and may disrupt migratory routes of diadromous fishes. Identification of diadromous species is a critical first step for preventing their loss due to hydropower development.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa