Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(9): 5061-5073, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36821524

RESUMO

The application of bimolecular reductive elimination to the activation of iron catalysts for alkene-diene cycloaddition is described. Key to this approach was the synthesis, characterization, electronic structure determination, and ultimately solution stability of a family of pyridine(diimine) iron methyl complexes with diverse steric properties and electronic ground states. Both the aryl-substituted, (MePDI)FeCH3 and (EtPDI)FeCH3 (RPDI = 2,6-(2,6-R2-C6H3N═CMe)2C5H3N), and the alkyl-substituted examples, (CyAPDI)FeCH3 (CyAPDI = 2,6-(C6H11N═CMe)2C5H3N), have molecular structures significantly distorted from planarity and S = 3/2 ground states. The related N-arylated derivative bearing 2,6-di-isopropyl aryl substituents, (iPrPDI)FeCH3, has an idealized planar geometry and exhibits spin crossover behavior from S = 1/2 to S = 3/2 states. At 23 °C under an N2 atmosphere, both (MePDI)FeCH3 and (EtPDI)FeCH3 underwent reductive elimination of ethane to form the iron dinitrogen precatalysts, [(MePDI)Fe(N2)]2(µ-N2) and [(EtPDI)Fe(N2)]2(µ-N2), respectively, while (iPrPDI)FeCH3 proved inert to C-C bond formation. By contrast, addition of butadiene to all three iron methyl complexes induced ethane formation and generated the corresponding iron butadiene complexes, (RPDI)Fe(η4-C4H6) (R = Me, Et, iPr), known precatalysts for the [2+2] cycloaddition of olefins and dienes. Kinetic, crossover experiments, and structural studies were combined with magnetic measurements and Mössbauer spectroscopy to elucidate the electronic and steric features of the iron complexes that enable this unusual reductive elimination and precatalyst activation pathway. Transmetalation of methyl groups between iron centers was fast at ambient temperature and independent of steric environment or spin state, while the intermediate dimer underwent the sterically controlled rate-determining reaction with either N2 or butadiene to access a catalytically active iron compound.

2.
Phys Chem Chem Phys ; 25(22): 15463-15468, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249180

RESUMO

The synthesis and characterisation of a bis(iminium)phenoxide diacid cation [4-tBu-C6H2-2,6-(HCN(H)Dipp)-1-O]+ ([H2tBu,DippL]+), is discussed. [H2tBu,DippL][BF4] (1) and [H2tBu,DippL][H2N{B(C6F5)3}2] (2) were synthesised in high yields via protonation of the bis(imino)phenol conjugate base with ethereal HBF4 or Bochmann's acid ([H(OEt2)2][H2N{B(C6F5)3}2]). Both species were fully characterised using NMR and IR spectroscopy as well as X-ray crystallography. The cationic fragment adopts an unusual tautomeric form in which both acidic protons are located on the nitrogen atoms: [HN〈O〉NH]+. This bis(iminium) phenoxide tautomer is stabilised by delocalisation of electron density from oxygen, into the extended π-system of the planar cation, and was found to be 22.6 and 263.1 kJ mol-1 lower in energy (ΔG) than the alternative [N〈OH〉NH]+ and [N〈OH2〉N]+ tautomers respectively. Topological analysis confirmed the presence of two electrostatic N+H⋯O- hydrogen bonds which contribute -111.2 kJ mol-1 towards the stabilisation of the diacid. The pKa values of the cations were estimated, from NMR experiments, to be 4.2 in THF (1) and 11.4 in acetonitrile (2).

3.
Inorg Chem ; 61(31): 12207-12218, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878422

RESUMO

The synthesis and characterization of group 4 permethylpentalene (Pn* = C8Me6) hydride complexes are explored; in all cases, multimetallic hydride clusters were obtained. Group 4 lithium metal hydride clusters were obtained when reacting the metal dihalides with hydride transfer reagents such as LiAlH4, and these species featured an unusual hexagonal bipyramidal structural motif. Only the zirconium analogue was found to undergo hydride exchange in the presence of deuterium. In contrast, a trimetallic titanium hydride cluster was isolated on reaction of the titanium dialkyl with hydrogen. This diamagnetic, mixed valence species was characterized in the solid state, as well as by solution electron paramagnetic resonance and nuclear magnetic resonance spectroscopy. The structure was further probed and corroborated by density functional theory calculations, which illustrated the formation of a metal-cluster bonding orbital responsible for the diamagnetism of the complex. These permethylpentalene hydride complexes have divergent structural motifs and reactivity in comparison with related classical cyclopentadienyl analogues.

4.
Inorg Chem ; 58(20): 14212-14227, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31578853

RESUMO

A family of group 15 MIII pyridine dipyrrolide complexes has been prepared and fully characterized; the reduction of these complexes was investigated with traditional strong metal reductants, which led either to over-reduction in the case of Mg and Zn or to ligand redistribution and "ate" complex formation when KC8 was used. However, by utilizing organosilanes as soluble reductants, the ring opening and two electron reduction of thf solvent was observed with concomitant formation of Bi-C and Si-O bonds; this is an example of a main group complex that is capable of ring opening a cyclic ether in the absence of additional metal reducing agents. The proposed BiII intermediate in this mechanism could be trapped using the stable organic radical TEMPO.

5.
J Am Chem Soc ; 139(17): 6110-6113, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28414434

RESUMO

Treatment of the bis(imino)pyridine molybdenum η6-benzene complex (iPrPDI)Mo(η6-C6H6) (iPrPDI, 2,6-(2,6-iPr2C6H3N═CMe)2C5H3N) with NH3 resulted in coordination induced haptotropic rearrangement of the arene to form (iPrPDI)Mo(NH3)2(η2-C6H6). Analogous η2-ethylene and η2-cyclohexene complexes were also synthesized, and the latter was crystallographically characterized. All three compounds undergo loss of the η2-coordinated ligand followed by N-H bond activation, bis(imino)pyridine modification, and H2 loss. A dual ammonia activation approach has been discovered whereby reversible M-L cooperativity and coordination induced bond weakening likely contribute to dihydrogen formation. Significantly, the weakened N-H bonds in (iPrPDI)Mo(NH3)2(η2-C2H4) enabled hydrogen atom abstraction and synthesis of a terminal nitride from coordinated ammonia, a key step in NH3 oxidation.

6.
Chemistry ; 22(32): 11461-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27363588

RESUMO

A cyclic (alkyl)(amino)carbene (CAAC) was found to undergo unprecedented rearrangements and transformations of its core structure in the presence of Group 1 and 2 metals. Although the carbene was also found to be prone to intramolecular C-H activation, it was competent for intermolecular activation of a variety of sp-, sp(2) -, and sp(3) -hybridized C-H bonds. Double C-F activation of hexafluorobenzene was also observed in this work. These processes all hold relevance to the role of these carbenes in catalysis, as well as to their use in the synthesis of new and unusual main group or transition metal complexes.

7.
Angew Chem Int Ed Engl ; 53(51): 14211-5, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25324154

RESUMO

The bis(imino)pyridine 2,6-(2,6-iPr2-C6H3N=CPh)2-C5H3N ((iPr)BPDI) molybdenum dinitrogen complex, [{((iPr)BPDI)Mo(N2)}2(µ2,η(1),η(1)-N2)] has been prepared and contains both weakly (terminal) and modestly (bridging) activated N2 ligands. Addition of ammonia resulted in sequential N-H bond activations, thus forming bridging parent imido (µ-NH) ligands with concomitant reduction of one of the imines of the supporting chelate. Using primary and secondary amines, model intermediates have been isolated that highlight the role of metal-ligand cooperativity in NH3 oxidation.

8.
Organometallics ; 43(4): 540-556, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38425384

RESUMO

A family of ansa-permethylindenyl-phenoxy (PHENI*) transition-metal chloride complexes has been synthesized and characterized (1-7; {(η5-C9Me6)Me(R″)Si(2-R-4-R'-C6H2O)}MCl2; R,R' = Me, tBu, Cumyl (CMe2Ph); R″ = Me, nPr, Ph; M = Ti, Zr, Hf). The ancillary chloride ligands could readily be exchanged with halides, alkyls, alkoxides, aryloxides, or amides to form PHENI* complexes [L]TiX2 (8-17; X = Br, I, Me, CH2SiMe3, CH2Ph, NMe2, OEt, ODipp). The solid-state crystal structures of these PHENI* complexes indicate that one of two conformations may be preferred, parametrized by a characteristic torsion angle (TA'), in which the η5 system is either disposed away from the metal center or toward it. Compared to indenyl PHENICS complexes, the permethylindenyl (I*) ligand appears to favor a conformation in which the metal center is more accessible. When heterogenized on solid polymethylaluminoxane (sMAO), titanium PHENI* complexes exhibit exceptional catalytic activity toward the polymerization of ethylene. Substantially greater activities are reported than for comparable PHENICS catalysts, along with the formation of ultrahigh-molecular-weight polyethylenes (UHMWPE). Catalyst-cocatalyst ion pairing effects are observed in cationization experiments and found to be significant in homogeneous catalytic regimes; these effects are also related to the influence of the ancillary ligand leaving groups in slurry-phase polymerizations. Catalytic efficiency and polyethylene molecular weight are found to increase with pressure, and PHENI* catalysts can be categorized as being among the most active for the controlled synthesis of UHMWPE.

9.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910507

RESUMO

Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.

10.
Inorg Chem ; 52(9): 5403-17, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23594241

RESUMO

The electronic structure of the diamagnetic pyridine imine enamide cobalt dinitrogen complex, ((iPr)PIEA)CoN2 ((iPr)PIEA = 2-(2,6-(i)Pr2-C6H3N═CMe)-6-(2,6-(i)Pr2-C6H3NC═CH2)C5H3N), was determined and is best described as a low-spin cobalt(II) complex antiferromagnetically coupled to an imine radical anion. Addition of potential radical sources such as NO, PhSSPh, or Ph3Cl resulted in C-C coupling at the enamide positions to form bimetallic cobalt compounds. Treatment with the smaller halocarbon, PhCH2Cl, again induced C-C coupling to form a bimetallic bis(imino)pyridine cobalt chloride product but also yielded a monomeric cobalt chloride product where the benzyl group added to the enamide carbon. Similar cooperative metal-ligand addition was observed upon treatment of ((iPr)PIEA)CoN2 with CH2═CHCH2Br, which resulted in allylation of the enamide carbon. Reduction of Coupled-((iPr)PDI)CoCl (Coupled-((iPr)PDI)CoCl = [2-(2,6-(i)Pr2-C6H3N═CMe)-C5H3N-6-(2,6-(i)Pr2-C6H3N═CCH2-)CoCl]2) with NaBEt3H led to quantitative formation of ((iPr)PIEA)CoN2, demonstrating the reversibility of the C-C bond forming reactions. The electronic structures of each of the bimetallic cobalt products were also elucidated by a combination of experimental and computational methods.


Assuntos
Carbono/química , Cobalto/química , Complexos de Coordenação/química , Nitrogênio/química , Piridinas/química , Elétrons , Iminas/química , Modelos Moleculares , Oxirredução , Teoria Quântica
11.
Chem Commun (Camb) ; 59(81): 12128-12131, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740304

RESUMO

Using a highly active supported permethylindenyl-phenoxy (PHENI*) titanium catalyst, high molecular weight ethylene-propylene (EPM) and ethylene-propylene-diene (EPDM) elastomers are prepared using slurry-phase catalysis. Final copolymer composition was found to reflect the monomer feed ratio in a linear fashion, to access a continuum of material properties with a single catalyst. Post-polymerisation crosslinking of EPDM was also demonstrated in a model sulfur vulcanisation system.

12.
Chem Sci ; 15(1): 250-258, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38131091

RESUMO

Using a highly active permethylindenyl-phenoxy (PHENI*) titanium catalyst, high to ultra-high molecular weight ethylene-linear-α-olefin (E/LAO) copolymers are prepared in high yields under mild conditions (2 bar, 30-90 °C). Controllable, efficient, and predictable comonomer enchainment provides access to a continuum of copolymer compositions and a vast range of material properties using a single monomer-agnostic catalyst. Multivariate statistical tools are employed that combine the tuneability of this system with the analytical and predictive power of data-derived models, this enables the targeting of polyolefins with designer properties directly through predictive alteration of reaction conditions.

13.
J Am Chem Soc ; 134(10): 4561-4, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22390262

RESUMO

Enantiopure C(1)-symmetric bis(imino)pyridine cobalt chloride, methyl, hydride, and cyclometalated complexes have been synthesized and characterized. These complexes are active as catalysts for the enantioselective hydrogenation of geminal-disubstituted olefins.


Assuntos
Alcenos/química , Cobalto/química , Piridinas/química , Hidrogenação , Modelos Moleculares , Estereoisomerismo
14.
Inorg Chem ; 51(6): 3770-85, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22394054

RESUMO

The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)FeN(2) and ((iPr)PDI)Fe(N(2))(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CMe)(2)C(5)H(3)N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption, and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, ((iPr)RPDI)FeN(2) ((iPr)RPDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CR)(2)C(5)H(3)N; R = Et, (i)Pr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the ((iPr)RPDI)FeN(2) compounds are intermediate spin ferrous derivatives (S(Fe) = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (S(PDI) = 1). While this ground state description is identical to that previously reported for ((iPr)PDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For ((iPr)RPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the ((iPr)RPDI)FeN(2) family, one of the iron singly occupied molecular orbitals (SOMOs) is essentially d(z(2)) in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of ((iPr)RPDI)FeN(2) and ((iPr)PDI)Fe(DMAP) differ from ((iPr)PDI)Fe(N(2))(2), a highly covalent molecule with a redox noninnocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.


Assuntos
Ferro/química , Nitrogênio/química , Piridinas/química , Espectroscopia de Mossbauer
15.
Dalton Trans ; 51(8): 3060-3074, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089302

RESUMO

A family of pyridine dipyrrolide bismuth complexes (Mes,PhL)MX (1-6) (M = Bi, X = O-2,6-Me-C6H3 = OXyl (1); M = Sb, X = OXyl (2); M = Bi, X = O-2,6-iPr-C6H3 = ODipp (3), O-2,6-tBu-C6H3 = OArtBu (4), OtBu (5) and OCMe2Et = OAm (6), N(SiMe3)2 = N'' (7) and CH2Ph (8)) have been prepared and investigated as initiators for the ring-opening polymerisation of lactide monomers. Bismuth lactate complexes (Mes,PhL)Bi{OC(H)(Me)C(O)OR} were prepared as models for the propagating species (R = tBu (9), Me (10), iPr (11)). The first insertion of the lactide monomer is rate limiting and the second and subsequent insertions are more rapid (kinit ≪ kLA2 < kprop), leading to a significant induction period. The sterically demanding, rigid pincer ligand affords a well-defined coordination environment at the metal centre and allows for the enchainment of two lactide monomers to be differentiated spectroscopically ((Mes,PhL)Bi{OC(H)(Me)C(O)}4OX (12-X)), with this species also implied to be the true initiator for the regime of propagation with first order kinetics. Well-controlled first order kinetic data for the polymerisation of L-, D-, rac- and meso-lactide are observed.

16.
J Am Chem Soc ; 133(30): 11744-56, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21657266

RESUMO

Two functional groups can be delivered at once to organo-rare earth complexes, (L)MR(2) and (L)(2)MR (M = Sc, Y; L = ({1-C(NDippCH(2)CH(2)N)}CH(2)CMe(2)O), Dipp = 2,6-(i)Pr(2)-C(6)H(3); R = CH(2)SiMe(3), CH(2)CMe(3)), via the addition of E-X across the metal-carbene bond to form a zwitterionic imidazolinium-metal complex, (L(E))MR(2)X, where L(E) = {1-EC(NDippCH(2)CH(2)N)}CH(2)CMe(2)O, E is a p-block functional group such as SiR(3), PR(2), or SnR(3), and X is a halide. The "ate" complex (L(Li))ScR(3) is readily accessible and is best described as a Li carbene adduct, ({1-Li(THF)C(NDippCH(2)CH(2)N)}CH(2)CMe(2)O)Sc(CH(2)SiMe(3))(3), since structural characterization shows the alkoxide ligand bridging the two metals and the carbene Li-bound with the shortest yet recorded Li-C bond distance. This can be converted via lithium halide-eliminating salt metathesis reactions to alkylated or silylated imidazolinium derivatives, (L(E))ScR(3) (E = SiMe(3) or CPh(3)). All the E-functionalized imidazolinium complexes spontaneously eliminate functionalized hydrocarbyl compounds upon warming to room temperature or slightly above, forming new organic products ER, i.e., forming C-Si, C-P, and C-Sn bonds, and re-forming the inorganic metal carbene (L)MR(X) or (L)(2)MX complex, respectively. Warming the tris(alkyl) complexes (L(E))MR(3) forms organic products arising from C-C or C-Si bond formation, which appears to proceed via the same elimination route. Treatment of (L)(2)Sc(CH(2)SiMe(3)) with iodopentafluorobenzene results in the "reverse sense" addition, which upon thermolysis forms the metal aryl complex (L)(2)Sc(C(6)F(5)) and releases the iodoalkane Me(3)SiCH(2)I, again facilitated by the reversible functionalization of the N-heterocyclic carbene group in these tethered systems.


Assuntos
Carbono/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Compostos Organometálicos/química , Silício/química , Cristalografia por Raios X , Metano/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Escândio/química , Estereoisomerismo , Ítrio/química
17.
J Am Chem Soc ; 133(43): 17353-69, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21985461

RESUMO

Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.


Assuntos
Compostos Férricos/química , Compostos Ferrosos/química , Imidas/química , Piridinas/química , Cristalografia por Raios X , Elétrons , Compostos Férricos/síntese química , Compostos Ferrosos/síntese química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
18.
Chem Commun (Camb) ; 57(69): 8600-8603, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34365496

RESUMO

Novel permethylindenyl-phenoxide (PHENI*) ansa-metallocene titanium complexes have been synthesised and immobilised on inorganic solid supports to afford highly effective catalysts for slurry-phase ethylene polymerisation. When supported on solid polymethylaluminoxane these complexes were both extremely active (up to 3.7 × 106 gPE molTi-1 h-1 bar-1) and produced substantially disentangled polyethylene with a weight-average molecular weight (Mw) of 3.4 MDa (disUHMWPE).

19.
RSC Adv ; 11(19): 11529-11535, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35423622

RESUMO

A new family of zirconocene complexes of the type (3-RInd#)2ZrX2 (where Ind# = C6Me5H and R = Me, Et and Ph) have been synthesised and fully characterised. Six new crystal structures have been reported (meso-(3-EtInd#)2ZrBr2, rac-(3-EtInd#)2ZrCl2, rac-(3-EtInd#)2Zr(CH2Ph)2, meso-(3-EtInd#)2Zr(CH2Ph)2, meso-(3-MeInd#)2ZrBr2 and meso-(3-MeInd#)2Zr(CH2Ph)2). The complexes were studied for slurry-phase ethylene polymerisation when immobilised on solid polymethylaluminoxane (sMAO). Variation in the initiation group was found to have greater influence over polymerisation activity for meso-catalysts than rac-catalysts, with meso-alkyl catalysts showing higher polymerisation activities than meso-halide. Below 70 °C, polymerisation activity follows the order sMAO-meso-(3-EtInd#)2Zr(CH2Ph)2, sMAO-meso-(3-EtInd#)2ZrCl2 and sMAO-meso-(3-EtInd#)2ZrBr2 (activities of 657, 561, and 452 kgPE molM -1 h-1 bar-1, respectively). sMAO-meso-(3-EtInd#)2ZrBr2 produces HDPE with the highest molecular weight, followed by sMAO-meso-(3-EtInd#)2ZrCl2 and sMAO-meso-(3-EtInd#)2Zr(CH2Ph)2 (M w of 503, 406, and 345 kg mol-1, respectively, at 50 °C). sMAO-meso-(3-MeInd#)2ZrBr2 produced HDPE with almost identical molecular weights to sMAO-meso-(3-EtInd#)2ZrCl2 (395 kg mol-1 at 50 °C).

20.
Dalton Trans ; 50(13): 4494-4498, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877169

RESUMO

We report the synthesis and characterisation of new permethylpentalene zirconium bis(amido) and permethylpentalene zirconium cyclopentadienyl mono(amido) complexes, and their reactivity with carbon dioxide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa