Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; : e2400784, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837286

RESUMO

Marine biofouling is a complex and dynamic process that significantly increases the carbon emissions from the maritime industry by increasing drag losses. However, there are no existing non-toxic marine paints that can achieve both effective fouling reduction and efficient fouling release. Inspired by antifouling strategies in nature, herein, a superoleophobic zwitterionic nanowire coating with a nanostructured hydration layer is introduced, which exhibits simultaneous fouling reduction and release performance. The zwitterionic nanowires demonstrate >25% improvement in fouling reduction compared to state-of-the-art antifouling nanostructures, and four times higher fouling-release compared to conventional zwitterionic coatings. Fouling release is successfully achieved under a wall shear force that is four orders of magnitude lower than regular water jet cleaning. The mechanism of this simultaneous fouling reduction and release behavior is explored, and it is found that a combination of 1) a mechanical biocidal effect from the nanowire geometry, and 2) low interfacial adhesion resulting from the nanostructured hydration layer, are the major contributing factors. These findings provide insights into the design of nanostructured coatings with simultaneous fouling reduction and release. The newly established synthesis procedure for the zwitterionic nanowires opens new pathways for implementation as antifouling coatings in the maritime industry and biomedical devices.

2.
Langmuir ; 39(1): 274-284, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36583570

RESUMO

Surface fouling occurs when undesired matter adheres and accumulates on a surface, resulting in a decrease or loss of functionality. Polymer and wax fouling can cause costly blockages to crude oil pipelines, clog jet fuel injectors, foul chemical reaction vessels, and significantly decrease the efficiency of heat exchangers. Fouling occurs in many forms but can be segmented based on adherent size, modulus, and chemical functionality. Depending on the foulant, surface design strategies can vary greatly. Few strategies exist to prevent the buildup of wax and polymers on surfaces. In this report, we investigate the potential of highly disordered, siloxane liquid-like layers as a strategy for reducing wax and polymer deposition. In our tests, it was found that the liquid-like layers developed here were able to reduce postadsorption roughness for polymer and wax by as much as 35- and 47-fold, respectively, when compared to the control. SFG was utilized to investigate the molecular-level interfacial properties for each of the modified surfaces to help understand the antifouling mechanism. The data showed that the likely higher grafting density and a large degree of random conformational freedom at the liquid-surface interface make the developed siloxane-covered surfaces energetically unfavorable for polymer and wax accretion.

3.
Anal Chem ; 93(22): 8054-8061, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038078

RESUMO

Multicellular spheroids are superior to other culture geometries in reproducing critical physiological conditions of tumors, such as the diffusion of oxygen, nutrients, waste, and drugs, leading to a more precise model of in vivo drug sensitivity and resistance. Previously reported spheroid culture platforms are often difficult to use, expensive, single-use, or mechanically unstable. Here, we report a facile, mechanically stable, high-throughput spheroid culture platform based on hierarchically textured omniphobic surfaces. The developed omniphobic surfaces display very high contact angles with a range of different liquids, including the cell-laden culture media, thereby minimizing the cell surface contact area. Additionally, these surfaces maintain these high contact angles for extended periods of time to ensure cell aggregation. Using this novel platform, we demonstrate the generation and maintenance of robust multicellular spheroids, as well as heterogeneous, multicell-type spheroids. The platform is extremely robust, resistant to mechanical shock, allows for on-plate imaging, and is also the first-ever spheroid generation platform that can be reused repeatedly. Finally, the platform is suitable for on-plate drug screening and enables the first-ever, on-plate immunofluorescence staining and imaging of spheroids.


Assuntos
Neoplasias , Esferoides Celulares , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
4.
Langmuir ; 37(10): 3104-3112, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33667094

RESUMO

There has been a recent drive to develop non-fluorinated superhydrophobic coatings due to the toxicity, cost, and environmental impact of perfluorinated components. One of the main challenges in developing superhydrophobic coatings in general and non-fluorinated superhydrophobic coatings in particular is optimization of mechanical durability, as the rough asperities required for maintaining superhydrophobicity tend to be easily removed by abrasion. Although rough and self-similar hydrophobic surfaces composed of loosely adhered particles or highly porous structures tend to produce excellent superhydrophobicity, they have low inherent mechanical durability and their longevity under real conditions is compromised. To address this issue, this work investigates the addition of a polymeric matrix material (the binder) to hydrophobic nanoparticles (the filler) to produce spray-coated superhydrophobic surfaces with improved inherent mechanical durability. Hansen solubility parameters were used to tune the interactions between the binder, filler, and solvent used to deliver the coating. It was found that lowering the binder/filler miscibility and using a poor solvent mixture generates more surface roughness, thereby lowering the minimum filler load required to achieve superhydrophobicity. This leads to an overall more inherently durable system that remains hydrophobic for thousands of light abrasion cycles.

5.
Langmuir ; 37(46): 13595-13601, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34752118

RESUMO

Separation operations are critical across a wide variety of manufacturing industries and account for about one-quarter of all in-plant energy consumption in the United States. Conventional liquid-liquid separation operations require either thermal or chemical treatment, both of which have a large environmental impact and carbon footprint. Consequently, there is a great need to develop sustainable, clean methodologies for separation of miscible liquid mixtures. The greatest opportunities to achieve this lie in replacing high-energy separation operations (e.g., distillation) with low-energy alternatives such as liquid-liquid extraction. One of the primary design challenges in liquid-liquid extraction is to maximize the interfacial area between two immiscible (e.g., polar and nonpolar) liquids for efficient mass transfer. However, this often involves energy-intensive methods including ultrasonication, pumping the feed and the extractant through packed columns with high tortuosity, or using a supercritical fluid as an extractant. Emulsifying the feed and the extractant, especially with a surfactant, offers a large interfacial area, but subsequent separation of emulsions can be energy-intensive and expensive. Thus, emulsions are typically avoided in conventional extraction operations. Herein, we discuss a novel, easily scalable, platform separation methodology termed CLEANS (continuous liquid-liquid extraction and in-situ membrane separation). CLEANS integrates emulsion-enhanced extraction with continuous, gravity-driven, membrane-based separation of emulsions into a single unit operation. Our results demonstrate that the addition of a surfactant and emulsification significantly enhance extraction (by >250% in certain cases), even for systems where the best extractants for miscible liquid mixtures are known. Utilizing the CLEANS methodology, we demonstrate continuous separation of a wide range of miscible liquid mixtures, including soluble organic molecules from oils, alcohols from esters, and even azeotropes.

6.
Analyst ; 144(12): 3790-3799, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116195

RESUMO

Herein we report the development of a cytometric analysis platform for measuring the contents of individual cells in absolute (picogram) scales; this study represents the first report of Raman-based quantitation of the absolute mass - or the total amount - of multiple endogenous biomolecules within single-cells. To enable ultraquantitative calibration, we engineered single-cell-sized micro-calibration standards of known composition by inkjet-printer deposition of biomolecular components in microarrays across the surface of silicon chips. We demonstrate clinical feasibility by characterizing the compositional phenotype of human skin fibroblast and porcine alveolar macrophage cell populations in the respective contexts of Niemann-Pick disease and drug-induced phospholipidosis: two types of lipid storage disorders. We envision this microanalytical platform as the foundation for many future biomedical applications, ranging from diagnostic assays to pathological analysis to advanced pharmaco/toxicokinetic research studies.

7.
Philos Trans A Math Phys Eng Sci ; 377(2138): 20180266, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30967072

RESUMO

In this review, we present a framework to guide the design of surfaces which are resistant to solid fouling, based on the modulus and length scale of the fouling material. Solid fouling is defined as the undesired attachment of solid contaminants including ice, clathrates, waxes, inorganic scale, polymers, proteins, dust and biological materials. We first provide an overview of the surface design approaches typically applied across the scope of solid fouling and explain how these disparate research efforts can be united to an extent under a single framework. We discuss how the elastic modulus and the operating length scale of a foulant determine its ability or inability to elastically deform surfaces. When surface deformation occurs, minimization of the substrate elastic modulus is critical for the facile de-bonding of a solid contaminant. Foulants with low modulus or small deposition sizes cannot deform an elastic bulk material and instead de-bond more readily from surfaces with chemistries that minimize their interfacial free energy or induce a particular repellant interaction with the foulant. Overall, we review reported surface design strategies for the reduction in solid fouling, and provide perspective regarding how our framework, together with the modulus and length scale of a foulant, can guide future antifouling surface designs. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology'.

8.
Philos Trans A Math Phys Eng Sci ; 374(2073)2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27354731

RESUMO

In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

9.
Nano Lett ; 14(4): 1961-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24611793

RESUMO

We fabricate high-efficiency, ultrathin (∼12 µm), flexible, upgraded metallurgical-grade polycrystalline silicon solar cells with multiple plasmonic layers precisely positioned on top of the cell to dramatically increase light absorption. This scalable approach increases the optical absorptivity of our solar cells over a broad range of wavelengths, and they achieve efficiencies η ≈ 11%. Detailed studies on the electrical and optical properties of the developed solar cells elucidate the light absorption contribution of each individual plasmonic layer. Finite-difference time-domain simulations were also performed to yield further insights into the obtained results. We anticipate that the findings from this work will provide useful design considerations for fabricating a range of different solar cell systems.

10.
Methods Mol Biol ; 2777: 191-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478345

RESUMO

Nanoparticle drug delivery has been promoted as an effective mode of delivering antineoplastic therapeutics. However, most nanoparticle designs fail to consider the multifaceted tumor microenvironment (TME) that produce pro-tumoral niches, which are often resistant to chemo- and targeted therapies. In order to target the chemoresistant cancer stem-like cells (CSCs) and their supportive TME, in this chapter we describe a nanoparticle-based targeted co-delivery that addresses the paracrine interactions between CSC and non-cancerous mesenchymal stem cells (MSCs) in the TME. Carcinoma-activated MSCs have been shown to increase the chemoresistance and metastasis of CSC. Yet their contributions to protect the CSC TME have not yet been systematically investigated in the design of nanoparticles for drug delivery. Therefore, we describe the fabrication of degradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles (120-200 nm), generated with an electrospraying process that encapsulates both a conventional chemotherapeutic, paclitaxel, and a targeted tyrosine kinase inhibitor, sunitinib, to limit MSC interactions with CSC. In the 3D hetero-spheroid model that comprises both CSCs and MSCs, the delivery of sunitinib as a free drug disrupted the MSC-protected CSC stemness and migration. Therefore, this chapter describes the co-delivery of paclitaxel and sunitinib via PLGA nanoparticles as a potential targeted therapy strategy for targeting CSCs. Overall, nanoparticles can provide an effective delivery platform for targeting CSCs and their TME together. Forthcoming studies can corroborate similar combined therapies with nanoparticles to improve the killing of CSC and chemoresistant cancer cells, thereby improving treatment efficiency.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Glicóis , Sunitinibe/farmacologia , Ácido Láctico , Antineoplásicos/farmacologia , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Portadores de Fármacos , Neoplasias/tratamento farmacológico
11.
Shock ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39158545

RESUMO

ABSTRACT: Infection of wounds delays healing, increases treatment costs, and leads to major complications. Current methods to manage such infections include antibiotic ointments and antimicrobial wound dressings, both of which have significant drawbacks, including frequent reapplication and contribution to antimicrobial resistance. In this work we developed wound dressings fabricated with a medical-grade polyurethane coating composed of natural plant secondary metabolites, cinnamaldehyde and alpha terpineol. Our wound dressings are easy to change and do not adhere to the wound bed. They kill gram-positive and -negative microbes in infected wounds due to the FDA-approved for human consumption components. The wound dressings were fabricated by dip coating. Antimicrobial efficacy was determined by quantifying the bacteria colonies after a 24 hour of immersion. Wound healing and bacterial reduction were assessed in an in vivo full-thickness porcine burn model. Our antimicrobial wound dressings showed a > 5-log reduction (99.999%) of different Gram-positive and Gram-negative bacteria, while maintaining absorbency. In the in vivo porcine burn model, our wound dressings were superior to bacitracin in decreasing bacterial burden during daily changes, without interfering with wound healing. Additionally, the dressings had a significantly lower adhesion to the wound bed. Our antimicrobial wound dressings reduced the burden of clinically relevant bacteria more than commercial antimicrobial wound dressings. In an in vivo infected burn wound model, our coatings performed as well or better than bacitracin. We anticipate that our wound dressings would be useful for the treatment of various types of acute and chronic wounds.

12.
ACS Appl Mater Interfaces ; 16(10): 13018-13028, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38440984

RESUMO

Fog formation is a common challenge for numerous applications, such as food packaging, mirrors, building windows, and freezer/refrigerator doors. Most notably, fog forms on the inner surfaces of prescription glasses and safety eyewear (particularly when used with a mask), face shields, and helmet lenses. Fogging is caused by the distortion of light from condensed water droplets present on a surface and can typically be prevented if the surface static water contact angle (θ) is less than ∼40°. Such a low contact angle can be readily achieved by either increasing the substrate surface energy or by engineering surface nanotexture. Unfortunately, such nanotexture can be readily damaged with use, while high surface energy substrates get covered with low surface energy foulants over time. Consequently, even with numerous ephemeral antifog coatings, currently there are no commercially available, durable, and permanent antifog coatings. Here we discuss the development of a new class of high-performance antifog coatings that are abrasion-resistant and long-lasting. These polyvinylpyrrolidone-based coatings, designed based on the classical Ratner-Lancaster wear model, dramatically outperform the base polymer, as well as all tested commercially available antifog coatings. Specifically, these coatings exhibit a > 400% increase in fogging time compared to base polymer, a > 50,000% increase in wear resistance, and excellent long-term antifog performance. The developed coatings also significantly outperformed all tested commercially available antifog coatings in terms of their antifog performance, wear resistance, and long-term cyclical performance. Additionally, the key design strategies employed here─incorporation of toughening agents and hydrophilic slip additives─offer a new approach to developing high-performance, durable antifog coatings based on other well-known antifog polymers.

13.
J Am Chem Soc ; 135(2): 578-81, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23265660

RESUMO

Superomniphobic surfaces display contact angles >150° and low contact angle hysteresis with essentially all contacting liquids. In this work, we report surfaces that display superomniphobicity with a range of different non-Newtonian liquids, in addition to superomniphobicity with a wide range of Newtonian liquids. Our surfaces possess hierarchical scales of re-entrant texture that significantly reduce the solid-liquid contact area. Virtually all liquids including concentrated organic and inorganic acids, bases, and solvents, as well as viscoelastic polymer solutions, can easily roll off and bounce on our surfaces. Consequently, they serve as effective chemical shields against virtually all liquids--organic or inorganic, polar or nonpolar, Newtonian or non-Newtonian.

14.
Nano Lett ; 12(10): 5143-7, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22947134

RESUMO

We present a thin film (<20 µm) solar cell based on upgraded metallurgical-grade polycrystalline Si that utilizes silver nanoparticles atop silicon nanopillars created by block copolymer nanolithography to enhance light absorption and increase cell efficiency η > 8%. In addition, the solar cells are flexible and semitransparent so as to reduce balance of systems costs and open new applications for conformable solar cell arrays on a variety of surfaces. Detailed studies on the optical and electrical properties of the resulting solar cells suggest that both antireflective and light-trapping mechanisms are key to the enhanced efficiency.

15.
Angew Chem Int Ed Engl ; 52(49): 13007-11, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24227787

RESUMO

See-through surfaces: High transparency is required to use superomniphobic surfaces, which can be self-cleaning, stain-proof, anti-bio-fouling, drag-reducing, or anti-fogging, for smartphone screens, eye glasses, windshields, or flat panel displays. A spray-based method has now been developed that can fabricate transparent, flexible, and highly superomniphobic surfaces. HD=hexadecane.

16.
Langmuir ; 28(25): 9834-41, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22612380

RESUMO

The liquid repellency and surface topography characteristics of coatings comprising a sprayed-on mixture of fluoroalkyl-functional precipitated silica and a fluoropolymer binder were examined using contact and sliding angle analysis, electron microscopy, and image analysis for determination of fractal dimensionality. The coatings proved to be an especially useful class of liquid repellent materials due to their combination of simple and scalable deposition process, low surface energy, and the roughness characteristics of the aggregates. These characteristics interact in a unique way to prevent the buildup of binder in interstitial regions, preserving re-entrant curvature across multiple length scales, thereby enabling a wide range of liquid repellency, including superoleophobicity. In addition, rather than accumulating in the interstices, the binder becomes widely distributed across the surface of the aggregates, enabling a mechanism in which a simple shortage or excess of binder controls the extent of coating roughness at very small length scales, thereby controlling the extent of liquid repellence.

17.
ACS Appl Mater Interfaces ; 14(19): 22466-22475, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35533373

RESUMO

Surfaces that are resistant to both liquid fouling and solid fouling are critical for many industrial and biomedical applications. However, surfaces developed to address these challenges thus far have been generally susceptible to mechanical damage. Herein, we report the design and fabrication of robust solid- and liquid-repellent elastomeric coatings that incorporate partially crosslinked lubricating chains within a durable polymer matrix. In particular, we fabricated partially crosslinked omniphobic polyurethane (omni-PU) coatings that can repel a broad range of liquid and solid foulants. The fabricated coatings are an order of magnitude more resistant to cyclic abrasion than current state-of-the-art slippery surfaces. Further through the integration of classic wetting and tribology models, we introduce a new material design parameter (KAR) for abrasion-resistant polymeric coatings. This combination of mechanical durability and broad antifouling properties enables the implication of such coatings to a wide variety of industrial and medical settings, including biocompatible implants, underwater vehicles, and antifouling robotics.

18.
Matter ; 5(11): 4076-4091, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36034972

RESUMO

Surfaces contaminated with bacteria and viruses contribute to the transmission of infectious diseases and pose a significant threat to global public health. Modern day disinfection either relies on fast-acting (>3-log reduction within a few minutes), yet impermanent, liquid-, vapor-, or radiation-based disinfection techniques, or long-lasting, but slower-acting, passive antimicrobial surfaces based on heavy metal surfaces, or metallic nanoparticles. There is currently no surface that provides instant and persistent antimicrobial efficacy against a broad spectrum of bacteria and viruses. In this work, we describe a class of extremely durable antimicrobial surfaces incorporating different plant secondary metabolites that are capable of rapid disinfection (>4-log reduction) of current and emerging pathogens within minutes, while maintaining persistent efficacy over several months and under significant environmental duress. We also show that these surfaces can be readily applied onto a variety of desired substrates or devices via simple application techniques such as spray, flow, or brush coating.

19.
Proc Natl Acad Sci U S A ; 105(47): 18200-5, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19001270

RESUMO

Superhydrophobic surfaces display water contact angles greater than 150 degrees in conjunction with low contact angle hysteresis. Microscopic pockets of air trapped beneath the water droplets placed on these surfaces lead to a composite solid-liquid-air interface in thermodynamic equilibrium. Previous experimental and theoretical studies suggest that it may not be possible to form similar fully-equilibrated, composite interfaces with drops of liquids, such as alkanes or alcohols, that possess significantly lower surface tension than water (gamma(lv) = 72.1 mN/m). In this work we develop surfaces possessing re-entrant texture that can support strongly metastable composite solid-liquid-air interfaces, even with very low surface tension liquids such as pentane (gamma(lv) = 15.7 mN/m). Furthermore, we propose four design parameters that predict the measured contact angles for a liquid droplet on a textured surface, as well as the robustness of the composite interface, based on the properties of the solid surface and the contacting liquid. These design parameters allow us to produce two different families of re-entrant surfaces- randomly-deposited electrospun fiber mats and precisely fabricated microhoodoo surfaces-that can each support a robust composite interface with essentially any liquid. These omniphobic surfaces display contact angles greater than 150 degrees and low contact angle hysteresis with both polar and nonpolar liquids possessing a wide range of surface tensions.

20.
Science ; 373(6552)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34437123

RESUMO

Surfaces that provide control over liquid, solid, or vapor accretion provide an evolutionary advantage to numerous plants, insects, and animals. Synthetic surfaces inspired by these natural surfaces can have a substantial impact on diverse commercial applications. Engineered liquid and solid repellent surfaces are often designed to impart control over a single state of matter, phase, or fouling length scale. However, surfaces used in diverse real-world applications need to effectively control the accrual of matter across multiple phases and fouling length scales. We discuss the surface design strategies aimed at controlling the accretion of different states of matter, particularly those that work across multiple length scales and different foulants. We also highlight notable applications, as well as challenges associated with these designer surfaces' scale-up and commercialization.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa