RESUMO
The obligate marine actinobacterial genus Salinispora has become a model organism for natural product discovery, yet little is known about the ecological functions of the compounds produced by this taxon. The aims of this study were to assess the effects of live cultures and culture extracts from two Salinispora species on invertebrate predators. In choice-based feeding experiments using the bacterivorous nematode Caenorhabditis elegans, live cultures of both Salinispora species were less preferred than Escherichia coli. When given a choice between the two species, C. elegans preferred S. areniolca over S. tropica. Culture extracts from S. tropica deterred C. elegans, while those from S. arenicola did not, suggesting that compounds produced by S. tropica account for the feeding deterrence. Bioactivity-guided isolation linked compounds in the lomaiviticin series to the deterrent activity. Additional assays using the marine polychaete Ophryotrocha siberti and marine nematodes further support the deterrent activity of S. tropica against potential predators. These results provide evidence that Salinispora natural products function as a defense against predation and that the strategies of predation defense differ between closely related species. IMPORTANCE Bacteria inhabiting marine sediments are subject to predation by bacterivorous eukaryotes. Here, we test the hypothesis that sediment-derived bacteria in the genus Salinispora produce biologically active natural products that function as a defense against predation. The results reveal that cultures and culture extracts of S. tropica deter feeding by Caenorhabditis elegans and negatively affect the habitat preference of a marine annelid (Ophryotrocha siberti). These activities were linked to the lomaiviticins, a series of cytotoxic compounds produced by S. tropica. Microbial natural products that function as a defense against predation represent a poorly understood trait that can influence community structure in marine sediments.
Assuntos
Actinobacteria , Micromonosporaceae , Animais , Caenorhabditis elegans , Ecossistema , Comportamento PredatórioRESUMO
Bacterial natural products remain an important source of new medicines. DNA sequencing has revealed that a majority of natural product biosynthetic gene clusters (BGCs) maintained in bacterial genomes have yet to be linked to the small molecules whose biosynthesis they encode. Efforts to discover the products of these orphan BGCs are driving the development of genome mining techniques based on the premise that many are transcriptionally silent during normal laboratory cultivation. Here, we employ comparative transcriptomics to assess BGC expression among four closely related strains of marine bacteria belonging to the genus Salinispora The results reveal that slightly more than half of the BGCs are expressed at levels that should facilitate product detection. By comparing the expression profiles of similar gene clusters in different strains, we identified regulatory genes whose inactivation appears linked to cluster silencing. The significance of these subtle differences between expressed and silent BGCs could not have been predicted a priori and was only revealed by comparative transcriptomics. Evidence for the conservation of silent clusters among a larger number of strains for which genome sequences are available suggests they may be under different regulatory control from the expressed forms or that silencing may represent an underappreciated mechanism of gene cluster evolution. Coupling gene expression and metabolomics data established a bioinformatic link between the salinipostins and their associated BGC, while genetic manipulation established the genetic basis for this series of compounds, which were previously unknown from Salinispora pacifica.
Assuntos
Actinobacteria , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Família Multigênica/fisiologia , Transcriptoma/fisiologia , Actinobacteria/genética , Actinobacteria/metabolismoRESUMO
Thousands of natural products have been identified from cultured microorganisms, yet evidence of their production in the environment has proven elusive. Technological advances in mass spectrometry, combined with public databases, now make it possible to address this disparity by detecting compounds directly from environmental samples. Here, we used adsorbent resins, tandem mass spectrometry, and next-generation sequencing to assess the metabolome of marine sediments and its relationship to bacterial community structure. We identified natural products previously reported from cultured bacteria, providing evidence they are produced in situ, and compounds of anthropogenic origin, suggesting this approach can be used as an indicator of environmental impact. The bacterial metabolite staurosporine was quantified and shown to reach physiologically relevant concentrations, indicating that it may influence sediment community structure. Staurosporine concentrations were correlated with the relative abundance of the staurosporine-producing bacterial genus Salinispora and production confirmed in strains cultured from the same location, providing a link between compound and candidate producer. Metagenomic analyses revealed numerous biosynthetic gene clusters related to indolocarbazole biosynthesis, providing evidence for noncanonical sources of staurosporine and a path forward to assess the relationships between natural products and the organisms that produce them. Untargeted environmental metabolomics circumvents the need for laboratory cultivation and represents a promising approach to understanding the functional roles of natural products in shaping microbial community structure in marine sediments.IMPORTANCE Natural products are readily isolated from cultured bacteria and exploited for useful purposes, including drug discovery. However, these compounds are rarely detected in the environments from which the bacteria are obtained, thus limiting our understanding of their ecological significance. Here, we used environmental metabolomics to directly assess chemical diversity in marine sediments. We identified numerous metabolites and, in one case, isolated strains of bacteria capable of producing one of the compounds detected. Coupling environmental metabolomics with community and metagenomic analyses provides opportunities to link compounds and producers and begin to assess the complex interactions mediated by specialized metabolites in marine sediments.
Assuntos
Bactérias/metabolismo , Produtos Biológicos/isolamento & purificação , Oceanos e Mares , Bactérias/genética , Produtos Biológicos/química , Descoberta de Drogas , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma , Metabolômica , Metagenoma , Microbiota/fisiologia , Micromonosporaceae/metabolismo , Família Multigênica , Água do Mar/microbiologiaRESUMO
Genome sequencing and the application of omic techniques are driving many important advances in the field of microbial natural products research. Despite these gains, there remain aspects of the natural product discovery pipeline where our knowledge remains poor. These include the extent to which biosynthetic gene clusters are transcriptionally active in native microbes, the temporal dynamics of transcription, translation, and natural product assembly, as well as the relationships between small molecule production and detection. Here we touch on a number of these concepts in the context of continuing efforts to unlock the natural product potential revealed in genome sequence data and discuss nomenclatural issues that warrant consideration as the field moves forward.