Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Great Lakes Res ; 48(4): 961-970, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35958273

RESUMO

Lake Peipsi, one of the world's largest lakes, is shared between Estonia and Russia. The water quality in different parts of the lake has so far been assessed independently. Here we explore opportunities for combining data of Estonian and Russian monitoring. For that, we 1) analysed the compatibility of data for some water quality variables; 2) estimated the potential effects of the differences in sampling frequency; 3) provided a few regression models to calculate the missing data for months not sampled by the Russian side. Data of the concurrent Estonian and Russian sampling indicated a good compatibility. Estonian data analysis suggested that water quality assessment results are sensitive to sampling frequency. For example, total phosphorus (TP) in the largest basin showed a long-term decreasing trend in three month data that disappeared when data for other months were added. Disregarding some months may lead to under- or overestimation of certain factors with no consistency in the response of different basins. Hence, data of the whole ice-free period are recommended for an adequate water quality assessment. Furthermore, we demonstrated that monthly values of the water quality variables of the same year are autocorrelated. Based on this, we filled the gaps in the long-term data and compiled a dataset for the whole lake that enables its most comprehensive use in water quality assessment and management. Long-term data revealed no water quality improvement of Lake Peipsi. Further reduction of the external nutrient load is needed. Eutrophication is sustained by high internal phosphorus load.

2.
Sci Total Environ ; 829: 154572, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35306066

RESUMO

Sediment phosphorus (P) recycling is one of the key issues in lake water quality management. We studied sediment P mobility in Võrtsjärv, a large shallow lake in Estonia using both sorption experiments and long-term (1985-2020) monitoring data of the lake. Over the years studied, the lake has undergone a decline in external phosphorus loading (EL), while no improvement in phytoplankton indicators was observed. The results of the sorption experiments revealed that it may be successfully used as a tool to determine P forms involved in P retention, as up to 100% of the P from the water column was detected in sediments. Incubation of wet sediment is preferred to dry because of the sensitivity of organic P to desiccation. In the sediments of Võrtsjärv, the labile P (Lab-P) and iron bound (Fe-P) fractions are the major forms of the mobile pool that supply internal P load as sediment released P. The internal P load calculated from summer total P (TP) increases (ILin situ) in the water column was on average 42%, but could reach 240% of EL at extreme environmental conditions. ILin situ was correlated with the active area, which resembles the area involved in redox-related P release in polymictic lakes, and with the mean bottom shear stress in summer. ILin situ showed a similar decreasing pattern as the external P load over the years 1985-2020, and was likely driven by the decrease of the pool of releasable P. Similarly, the decreases in sediment loading by P retention in our P sorption experiment were associated with decreases in the concentration of the potentially mobile P forms (mainly Lab-P and Fe-P). These results show that changes in external P loading can successfully control internal P loading and are useful in water quality management of large lakes.


Assuntos
Lagos , Poluentes Químicos da Água , Monitoramento Ambiental , Eutrofização , Sedimentos Geológicos , Fósforo/análise , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 621: 352-359, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29190558

RESUMO

We aimed at quantifying the importance of limnological variables in the decadal rise of cyanobacteria biomass in shallow hemiboreal lakes. We constructed estimates of cyanobacteria (blue-green algae) biomass in a large, eutrophic lake (Estonia, Northeastern Europe) from a database comprising 28 limnological variables and spanning more than 50years of monitoring. Using a dual-model approach consisting in a boosted regression trees (BRT) followed by a generalized least squares (GLS) model, our results revealed that six variables were most influential for assessing the variance of cyanobacteria biomass. Cyanobacteria response to nitrate concentration and rotifer abundance was negative, whereas it was positive to pH, temperature, cladoceran and copepod biomass. Response to total phosphorus (TP) and total phosphorus to total nitrogen ratio was very weak, which suggests that actual in-lake TP concentration is still above limiting values. The most efficient GLS model, which explained nearly two thirds (r2=0.65) of the variance of cyanobacteria biomass included nitrate concentration, water temperature and pH. The very high number of observations (maximum n=525) supports the robustness of the models. Our results suggest that the decadal rise of blue-green algae in shallow lakes lies in the interaction between cultural eutrophication and global warming which bring in-lake physical and chemical conditions closer to cyanobacteria optima.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Lagos/microbiologia , Animais , Biomassa , Cladocera , Copépodes , Estônia , Fósforo/análise , Rotíferos
4.
Sci Data ; 5: 180226, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30351308

RESUMO

Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.


Assuntos
Cianobactérias/química , Monitoramento Ambiental , Lagos , Mudança Climática , Europa (Continente) , Fitoplâncton/química , Pigmentos Biológicos
5.
Water Res ; 102: 32-40, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27318445

RESUMO

Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes.


Assuntos
Monitoramento Ambiental , Lagos , Carbono , Água , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa