RESUMO
The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The auxin response factor (ARF) transcription factor family regulates auxin-responsive gene expression and exhibits nuclear localization in regions of high auxin responsiveness. Here we show that the ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. We found that the intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, providing a mechanism for cellular competence for auxin signaling.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genéticaRESUMO
Pathogenic variants in surfactant proteins SP-B and SP-C cause surfactant deficiency and interstitial lung disease. Surfactant proteins are synthesized as precursors (proSP-B, proSP-C), trafficked, and processed via a vesicular-regulated secretion pathway; however, control of vesicular trafficking events is not fully understood. Through the Undiagnosed Diseases Network, we evaluated a child with interstitial lung disease suggestive of surfactant deficiency. Variants in known surfactant dysfunction disorder genes were not found in trio exome sequencing. Instead, a de novo heterozygous variant in RAB5B was identified in the Ras/Rab GTPases family nucleotide binding domain, p.Asp136His. Functional studies were performed in Caenorhabditis elegans by knocking the proband variant into the conserved position (Asp135) of the ortholog, rab-5 Genetic analysis demonstrated that rab-5[Asp135His] is damaging, producing a strong dominant negative gene product. rab-5[Asp135His] heterozygotes were also defective in endocytosis and early endosome (EE) fusion. Immunostaining studies of the proband's lung biopsy revealed that RAB5B and EE marker EEA1 were significantly reduced in alveolar type II cells and that mature SP-B and SP-C were significantly reduced, while proSP-B and proSP-C were normal. Furthermore, staining normal lung showed colocalization of RAB5B and EEA1 with proSP-B and proSP-C. These findings indicate that dominant negative-acting RAB5B Asp136His and EE dysfunction cause a defect in processing/trafficking to produce mature SP-B and SP-C, resulting in interstitial lung disease, and that RAB5B and EEs normally function in the surfactant secretion pathway. Together, the data suggest a noncanonical function for RAB5B and identify RAB5B p.Asp136His as a genetic mechanism for a surfactant dysfunction disorder.
Assuntos
Variação Genética/genética , Precursores de Proteínas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas rab5 de Ligação ao GTP/genética , Células Epiteliais Alveolares/metabolismo , Animais , Caenorhabditis elegans/genética , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética , Surfactantes Pulmonares/metabolismoRESUMO
BACKGROUND & AIMS: Insulin signaling is known to regulate essential proteostasis mechanisms. METHODS: The analyses here examined effects of insulin signaling in the PiZ mouse model of α1-antitrypsin deficiency in which hepatocellular accumulation and proteotoxicity of the misfolded α1-antitrypsin Z variant (ATZ) causes liver fibrosis and cancer. RESULTS: We first studied the effects of breeding PiZ mice to liver-insulin-receptor knockout (LIRKO) mice (with hepatocyte-specific insulin-receptor gene disruption). The results showed decreased hepatic ATZ accumulation and liver fibrosis in PiZ x LIRKO vs PiZ mice, with reversal of those effects when we bred PiZ x LIRKO mice onto a FOXO1-deficient background. Increased intracellular degradation of ATZ mediated by autophagy was identified as the likely mechanism for diminished hepatic proteotoxicity in PiZ x LIRKO mice and the converse was responsible for enhanced toxicity in PiZ x LIRKO x FOXO1-KO animals. Transcriptomic studies showed major effects on oxidative phosphorylation and autophagy genes, and significant induction of peroxisome proliferator-activated-receptor-γ-coactivator-1α (PGC1α) expression in PiZ-LIRKO mice. Because PGC1α plays a key role in oxidative phosphorylation, we further investigated its effects on ATZ proteostasis in our ATZ-expressing mammalian cell model. The results showed PGC1α overexpression or activation enhances autophagic ATZ degradation. CONCLUSIONS: These data implicate suppression of autophagic ATZ degradation by down-regulation of PGC1α as one mechanism by which insulin signaling exacerbates hepatic proteotoxicity in PiZ mice, and identify PGC1α as a novel target for development of new human α1-antitrypsin deficiency liver disease therapies.
Assuntos
Insulina , Fígado , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Deficiência de alfa 1-Antitripsina , Animais , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/patologiaRESUMO
Stem cell systems are essential for the development and maintenance of polarized tissues. Intercellular signaling pathways control stem cell systems, where niche cells signal stem cells to maintain the stem cell fate/self-renewal and inhibit differentiation. In the C. elegans germline, GLP-1 Notch signaling specifies the stem cell fate, employing the sequence-specific DNA binding protein LAG-1 to implement the transcriptional response. We undertook a comprehensive genome-wide approach to identify transcriptional targets of GLP-1 signaling. We expected primary response target genes to be evident at the intersection of genes identified as directly bound by LAG-1, from ChIP-seq experiments, with genes identified as requiring GLP-1 signaling for RNA accumulation, from RNA-seq analysis. Furthermore, we performed a time-course transcriptomics analysis following auxin inducible degradation of LAG-1 to distinguish between genes whose RNA level was a primary or secondary response of GLP-1 signaling. Surprisingly, only lst-1 and sygl-1, the two known target genes of GLP-1 in the germline, fulfilled these criteria, indicating that these two genes are the primary response targets of GLP-1 Notch and may be the sole germline GLP-1 signaling protein-coding transcriptional targets for mediating the stem cell fate. In addition, three secondary response genes were identified based on their timing following loss of LAG-1, their lack of a LAG-1 ChIP-seq peak and that their glp-1 dependent mRNA accumulation could be explained by a requirement for lst-1 and sygl-1 activity. Moreover, our analysis also suggests that the function of the primary response genes lst-1 and sygl-1 can account for the glp-1 dependent peak protein accumulation of FBF-2, which promotes the stem cell fate and, in part, for the spatial restriction of elevated LAG-1 accumulation to the stem cell region.
Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Notch/metabolismo , Células-Tronco Germinativas Adultas/citologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Células Germinativas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Receptores Notch/genética , Transdução de Sinais , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Calcium signals are initiated in immune cells by the process of store-operated calcium entry (SOCE), where receptor activation triggers transient calcium release from the endoplasmic reticulum, followed by opening of plasma-membrane calcium-release activated calcium (CRAC) channels. ORAI1, ORAI2, and ORAI3 are known to comprise the CRAC channel; however, the contributions of individual isoforms to neutrophil function are not well understood. Here, we show that loss of ORAI1 partially decreases calcium influx, while loss of both ORAI1 and ORAI2 completely abolishes SOCE. In other immune-cell types, loss of ORAI2 enhances SOCE. In contrast, we find that ORAI2-deficient neutrophils display decreased calcium influx, which is correlated with measurable differences in the regulation of neutrophil membrane potential via KCa3.1. Decreased SOCE in ORAI1-, ORAI2-, and ORAI1/2-deficient neutrophils impairs multiple neutrophil functions, including phagocytosis, degranulation, leukotriene, and reactive oxygen species (ROS) production, rendering ORAI1/2-deficient mice highly susceptible to staphylococcal infection. This study demonstrates that ORAI1 and ORAI2 are the primary components of the neutrophil CRAC channel and identifies subpopulations of neutrophils where cell-membrane potential functions as a rheostat to modulate the SOCE response. These findings have implications for mechanisms that modulate neutrophil function during infection, acute and chronic inflammatory conditions, and cancer.
Assuntos
Sinalização do Cálcio , Cálcio/imunologia , Neutrófilos/imunologia , Proteína ORAI1/imunologia , Proteína ORAI2/imunologia , Animais , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína ORAI1/genética , Proteína ORAI2/genéticaRESUMO
BACKGROUND & AIMS: The enteric nervous system (ENS) coordinates essential intestinal functions through the concerted action of diverse enteric neurons (ENs). However, integrated molecular knowledge of EN subtypes is lacking. To compare human and mouse ENs, we transcriptionally profiled healthy ENS from adult humans and mice. We aimed to identify transcripts marking discrete neuron subtypes and visualize conserved EN subtypes for humans and mice in multiple bowel regions. METHODS: Human myenteric ganglia and adjacent smooth muscle were isolated by laser-capture microdissection for RNA sequencing. Ganglia-specific transcriptional profiles were identified by computationally subtracting muscle gene signatures. Nuclei from mouse myenteric neurons were isolated and subjected to single-nucleus RNA sequencing, totaling more than 4 billion reads and 25,208 neurons. Neuronal subtypes were defined using mouse single-nucleus RNA sequencing data. Comparative informatics between human and mouse data sets identified shared EN subtype markers, which were visualized in situ using hybridization chain reaction. RESULTS: Several EN subtypes in the duodenum, ileum, and colon are conserved between humans and mice based on orthologous gene expression. However, some EN subtype-specific genes from mice are expressed in completely distinct morphologically defined subtypes in humans. In mice, we identified several neuronal subtypes that stably express gene modules across all intestinal segments, with graded, regional expression of 1 or more marker genes. CONCLUSIONS: Our combined transcriptional profiling of human myenteric ganglia and mouse EN provides a rich foundation for developing novel intestinal therapeutics. There is congruency among some EN subtypes, but we note multiple species differences that should be carefully considered when relating findings from mouse ENS research to human gastrointestinal studies.
Assuntos
Diferenciação Celular/genética , Sistema Nervoso Entérico/fisiologia , Regulação da Expressão Gênica/fisiologia , Neurônios/metabolismo , Especificidade da Espécie , Adolescente , Adulto , Animais , Núcleo Celular/metabolismo , Colo/citologia , Colo/inervação , Modelos Animais de Doenças , Duodeno/citologia , Duodeno/inervação , Feminino , Gastroenteropatias/diagnóstico , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Motilidade Gastrointestinal , Humanos , Íleo/citologia , Íleo/inervação , Microdissecção e Captura a Laser , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , RNA-Seq , Fatores Sexuais , Análise de Célula Única , Adulto JovemRESUMO
Innate immune responses to emerging RNA viruses are increasingly recognized as having significant contributions to neurologic sequelae, especially memory disorders. Using a recovery model of West Nile virus (WNV) encephalitis, we show that, while macrophages deliver the antiviral and anti-neurogenic cytokine IL-1ß during acute infection; viral recovery is associated with continued astrocyte inflammasome-mediated production of inflammatory levels of IL-1ß, which is maintained by hippocampal astrogenesis via IL-1R1 signaling in neural stem cells (NSC). Accordingly, aberrant astrogenesis is prevented in the absence of IL-1 signaling in NSC, indicating that only newly generated astrocytes exert neurotoxic effects, preventing synapse repair and promoting spatial learning deficits. Ex vivo evaluation of IL-1ß-treated adult hippocampal NSC revealed the upregulation of developmental differentiation pathways that derail adult neurogenesis in favor of astrogenesis, following viral infection. We conclude that NSC-specific IL-1 signaling within the hippocampus during viral encephalitis prevents synapse recovery and promotes spatial learning defects via altered fates of NSC progeny that maintain inflammation.
Assuntos
Encefalite Viral , Células-Tronco Neurais , Febre do Nilo Ocidental , Humanos , Inflamassomos/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Febre do Nilo Ocidental/metabolismoRESUMO
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.
Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Aciltransferases , Animais , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Periostin (POSTN), a secretory matricellular matrix protein, plays a multitude of biologic functions. Various splice variants of POSTN have been described; however, their expression pattern and functional implications are not completely understood. This study was undertaken to decipher the differential expression pattern of POSTN and its splice variants in various tissues and cell types. We show that POSTN was more highly expressed in anterior cruciate ligament (ACL) remnants compared with articular cartilage at the cellular and tissue level. Isoforms 1 and 8 were highly expressed only in articular chondrocytes, suggesting their splice-specific regulation in chondrocytes. To discern the role of total POSTN and full-length human POSTN isoform 1 (hPOSTN-001), we stably transfected human chondrosarcoma 1 (hCh-1) cell line with hPOSTN-001 using a pcDNA3.1-hPOSTN-001 construct. RNA-sequencing analysis of hCh-1 cells identified differentially expressed genes with a known role in chondrocyte function and osteoarthritis. Similar expression of a subset of candidate genes was revealed in ACL progenitor cells and chondrocytes as well as in ACL progenitor cells in which POSTN activity was altered by overexpression and by small interfering RNA gene knockdown. Cells expressing total POSTN, not isoform 1, exhibited increased cell adhesion potential. These findings suggest an important role for POSTN in the knee.-Cai, L., Brophy, R. H., Tycksen, E. D., Duan, X., Nunley, R. M., Rai, M. F. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells.
Assuntos
Ligamento Cruzado Anterior/metabolismo , Moléculas de Adesão Celular/biossíntese , Regulação da Expressão Gênica , Células-Tronco/metabolismo , Adolescente , Adulto , Ligamento Cruzado Anterior/citologia , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Condrócitos , Feminino , Humanos , Masculino , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Células-Tronco/citologiaRESUMO
Obesity and diabetes modulate macrophage activation, often leading to prolonged inflammation and dysfunctional tissue repair. Increasing evidence suggests that the NLRP3 inflammasome plays an important role in obesity-associated inflammation. We have previously shown that activation of the lipotoxic inflammasome by excess fatty acids in macrophages occurs via a lysosome-dependent pathway. However, the mechanisms that link cellular lipid metabolism to altered inflammation remain poorly understood. PPARγ is a nuclear receptor transcription factor expressed by macrophages that is known to alter lipid handling, mitochondrial function, and inflammatory cytokine expression. To undercover novel links between metabolic signaling and lipotoxic inflammasome activation, we investigated mouse primary macrophages deficient in PPARγ. Contrary to our expectation, PPARγ knockout (KO) macrophages released significantly less IL-1ß and IL-1α in response to lipotoxic stimulation. The suppression occurred at the transcriptional level and was apparent for multiple activators of the NLRP3 inflammasome. RNA sequencing revealed upregulation of IFN-ß in activated PPARγKO macrophages, and this was confirmed at the protein level. A blocking Ab against the type 1 IFNR restored the release of IL-1ß to wild type levels in PPARγKO cells, confirming the mechanistic link between these events. Conversely, PPARγ activation with rosiglitazone selectively suppressed IFN-ß expression in activated macrophages. Loss of PPARγ also resulted in diminished expression of genes involved in sterol biosynthesis, a pathway known to influence IFN production. Together, these findings demonstrate a cross-talk pathway that influences the interplay between metabolism and inflammation in macrophages.
Assuntos
Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/fisiologia , Obesidade/imunologia , PPAR gama/genética , Animais , Células Cultivadas , Interferon Tipo I/metabolismo , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Rosiglitazona/farmacologia , Análise de Sequência de RNARESUMO
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the huntingtin protein (Htt). Transcriptional dysregulation is an early event in the course of HD progression and is thought to contribute to disease pathogenesis, but how mutant Htt causes transcriptional alterations and subsequent cell death in neurons is not well understood. RNA-Seq analysis revealed that expression of a mutant Htt fragment in primary cortical neurons leads to robust gene expression changes before neuronal death. Basic helix-loop-helix transcription factor Twist1, which is essential for embryogenesis and is normally expressed at low levels in mature neurons, was substantially up-regulated in mutant Htt-expressing neurons in culture and in the brains of HD mouse models. Knockdown of Twist1 by RNAi in mutant Htt-expressing primary cortical neurons reversed the altered expression of a subset of genes involved in neuronal function and, importantly, abrogated neurotoxicity. Using brain-derived neurotrophic factor (Bdnf), which is known to be involved in HD pathogenesis, as a model gene, we found that Twist1 knockdown could reverse mutant Htt-induced DNA hypermethylation at the Bdnf regulatory region and reactivate Bdnf expression. Together, these results suggest that Twist1 is an important upstream mediator of mutant Htt-induced neuronal death and may in part operate through epigenetic mechanisms.
Assuntos
Epigênese Genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteína 1 Relacionada a Twist/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Metilação de DNA , Feminino , Redes Reguladoras de Genes , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Masculino , Camundongos , Mutação , Neurônios/metabolismo , Ativação Transcricional , Proteína 1 Relacionada a Twist/metabolismoRESUMO
BACKGROUND: The arrival of RNA-seq as a high-throughput method competitive to the established microarray technologies has necessarily driven a need for comparative evaluation. To date, cross-platform comparisons of these technologies have been relatively few in number of platforms analyzed and were typically gene name annotation oriented. Here, we present a more extensive and yet precise assessment to elucidate differences and similarities in performance of numerous aspects including dynamic range, fidelity of raw signal and fold-change with sample titration, and concordance with qRT-PCR (TaqMan). To ensure that these results were not confounded by incompatible comparisons, we introduce the concept of probe mapping directed "transcript pattern". A transcript pattern identifies probe(set)s across platforms that target a common set of transcripts for a specific gene. Thus, three levels of data were examined: entire data sets, data derived from a subset of 15,442 RefSeq genes common across platforms, and data derived from the transcript pattern defined subset of 7,034 RefSeq genes. RESULTS: In general, there were substantial core similarities between all 6 platforms evaluated; but, to varying degrees, the two RNA-seq protocols outperformed three of the four microarray platforms in most categories. Notably, a fourth microarray platform, Agilent with a modified protocol, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments, especially in regards to fold-change evaluation. Furthermore, these 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% fold-change concordance with the gold standard qRT-PCR (TaqMan). CONCLUSIONS: This study suggests that microarrays can perform on nearly equal footing with RNA-seq, in certain key features, specifically when the dynamic range is comparable. Furthermore, the concept of a transcript pattern has been introduced that may minimize potential confounding factors of multi-platform comparison and may be useful for similar evaluations.
Assuntos
Perfilação da Expressão Gênica/instrumentação , RNA/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA/química , Reprodutibilidade dos TestesRESUMO
OBJECTIVES: Aberrant chondrocyte metabolism significantly contributes to cartilage degeneration and osteoarthritis (OA) genesis. However, the mechanisms driving the metabolic shift in OA chondrocytes remain unclear. Interestingly, carbonic anhydrase 2 (CA2) is implicated in metabolic regulation, and its expression dramatically increases in OA chondrocytes, but its exact role and mechanism are poorly understood. This study investigates the mechanistic role of CA2 in chondrocyte metabolic homeostasis under inflammatory conditions. METHODS: RNA-seq was performed on CA2-deficient C28/I2 cells to identify pathways affected by the loss of CA2 function. We examined CA2's impact on chondrocyte metabolism, anabolism, and catabolism using C28/I2 cells and primary chondrocytes under normoxia and hypoxia and in a model of inflammatory OA. RESULTS: RNA-seq revealed enrichment of glycolysis, apoptosis, and TNF signaling pathways in CA2-deficient cells. Under hypoxia, CA2 expression increased 10-fold in a HIF-1α-independent manner. Knockdown of CA2 reduced extracellular lactate production, increased ADP/ATP ratio, impaired glycolysis, reduced glycolytic capacity, and lowered expression of glycolysis rate-limiting enzymes but did not disrupt pHi and ROS production. CA2 deficiency altered chondrocyte anabolic and catabolic equilibrium by affecting PI3K/AKT and RELA/p65 signaling. Chondrocyte migration was impeded, proliferation suppressed, and the cell cycle arrested at G0/G1 in cells lacking CA2. Forced expression of CA2 stabilized chondrocyte metabolism and restored cellular functions. CONCLUSIONS: Our research uncovered a novel mechanistic role for CA2 in regulating chondrocyte energy metabolism and inflammation, underscoring its potential as a critical mediator in OA pathogenesis. Further research using a murine model of experimental OA is warranted to capture the functional implications of CA2.
RESUMO
BACKGROUND: Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. METHODS: In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks. RESULTS: We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. CONCLUSION: Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
We sought to understand why females have higher rates of Alzheimer's disease, and males have higher rates of autism. One idea was that the female brain at baseline may be more similar to an Alzheimer's brain, so it is easier for them to shift into that state (likewise, males may be more similar to autism). To test this, we examined gene expression differences between brains of biological males and biological females. While all people have the same ~ 25,000 genes, each gene can be on or off ('expressed') to different extents. Overall, we found that there were differences in gene expression between males and females in all brain regions tested but more differences in some brain regions than others. By looking at the role of these genes we estimate that female immune system processes might be more active in the brain. We also found female brain gene expression looked slightly more like people with Alzheimer's compared to people without Alzheimer's, which may explain why females get Alzheimer's disease more easily. However, the male brain gene expression did not look more like autism, suggesting that the reason males have higher rates of autism is complex and needs further investigation.
Assuntos
Doença de Alzheimer , Transtorno Autístico , Encéfalo , Caracteres Sexuais , Humanos , Doença de Alzheimer/genética , Masculino , Feminino , Transtorno Autístico/genética , Encéfalo/metabolismo , Expressão GênicaRESUMO
With aging, bone mass declines and the anabolic effects of skeletal loading diminish. While much research has focused on gene transcription, how bone ages and loses its mechanoresponsiveness at the protein level remains unclear. We developed a novel proteomics approach and performed a paired mass spectrometry and RNA-seq analysis on tibias from young-adult (5-month) and old (22-month) mice. We report the first correlation estimate between the bone proteome and transcriptome (Spearman ρ = 0.40), which is in line with other tissues but indicates that a relatively low amount of variation in protein levels is explained by the variation in transcript levels. Of 71 shared targets that differed with age, eight were associated with bone mineral density in previous GWAS, including understudied targets Asrgl1 and Timp2. We used complementary RNA in situ hybridization to confirm that Asrgl1 and Timp2 had reduced expression in osteoblasts/osteocytes in old bones. We also found evidence for reduced TGF-beta signaling with aging, in particular Tgfb2. Next, we defined proteomic changes following mechanical loading. At the protein level, bone differed more with age than with loading, and aged bone had fewer loading-induced changes. Overall, our findings underscore the need for complementary protein-level assays in skeletal biology research.
Assuntos
Envelhecimento , Osteogênese , Proteômica , Animais , Camundongos , Envelhecimento/metabolismo , Envelhecimento/genética , Osteogênese/fisiologia , Suporte de Carga , Tíbia/metabolismo , Proteoma/metabolismo , Densidade Óssea , Camundongos Endogâmicos C57BL , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Transcriptoma , MasculinoRESUMO
Despite six decades of the use of exogenous oxytocin for management of labor, little is known about its effects on the developing brain. Motivated by controversial reports suggesting a link between oxytocin use during labor and autism spectrum disorders (ASDs), we employed our recently validated rat model for labor induction with oxytocin to address this important concern. Using a combination of molecular biological, behavioral, and neuroimaging assays, we show that induced birth with oxytocin leads to sex-specific disruption of oxytocinergic signaling in the developing brain, decreased communicative ability of pups, reduced empathy-like behaviors especially in male offspring, and widespread sex-dependent changes in functional cortical connectivity. Contrary to our hypothesis, social behavior, typically impaired in ASDs, was largely preserved. Collectively, our foundational studies provide nuanced insights into the neurodevelopmental impact of birth induction with oxytocin and set the stage for mechanistic investigations in animal models and prospective longitudinal clinical studies.
RESUMO
Apolipoprotein E (APOE) is a strong genetic risk factor for late-onset Alzheimer's disease (LOAD). APOE4 increases and APOE2 decreases risk relative to APOE3. In the P301S mouse model of tauopathy, ApoE4 increases tau pathology and neurodegeneration when compared with ApoE3 or the absence of ApoE. However, the role of ApoE isoforms and lipid metabolism in contributing to tau-mediated degeneration is unknown. We demonstrate that in P301S tau mice, ApoE4 strongly promotes glial lipid accumulation and perturbations in cholesterol metabolism and lysosomal function. Increasing lipid efflux in glia via an LXR agonist or Abca1 overexpression strongly attenuates tau pathology and neurodegeneration in P301S/ApoE4 mice. We also demonstrate reductions in reactive astrocytes and microglia, as well as changes in cholesterol biosynthesis and metabolism in glia of tauopathy mice in response to LXR activation. These data suggest that promoting efflux of glial lipids may serve as a therapeutic approach to ameliorate tau and ApoE4-linked neurodegeneration.
Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Tauopatias/tratamento farmacológico , Tauopatias/genética , Colesterol , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos TransgênicosRESUMO
Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-seq datasets using both within-region and pan-regional frameworks. We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-cell data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. Finally, we provide region specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
RESUMO
In females, the hippocampus, a critical brain region for coordination of learning, memory, and behavior, displays altered physiology and behavioral output across the estrous or menstrual cycle. However, the molecular effectors and cell types underlying these observed cyclic changes have only been partially characterized to date. Recently, profiling of mice null for the AMPA receptor trafficking gene Cnih3 have demonstrated estrous-dependent phenotypes in dorsal hippocampal synaptic plasticity, composition, and learning/memory. We therefore profiled dorsal hippocampal transcriptomes from female mice in each estrous cycle stage, and contrasted it with that of males, across wild-type (WT) and Cnih3 mutants. In wild types, we identified only subtle differences in gene expression between the sexes, while comparing estrous stages to one another revealed up to >1000 differentially expressed genes (DEGs). These estrous-responsive genes are especially enriched in gene markers of oligodendrocytes and the dentate gyrus, and in functional gene sets relating to estrogen response, potassium channels, and synaptic gene splicing. Surprisingly, Cnih3 knock-outs (KOs) showed far broader transcriptomic differences between estrous cycle stages and males. Moreover, Cnih3 knock-out drove subtle but extensive expression changes accentuating sex differential expression at diestrus and estrus. Altogether, our profiling highlights cell types and molecular systems potentially impacted by estrous-specific gene expression patterns in the adult dorsal hippocampus, enabling mechanistic hypothesis generation for future studies of sex-differential neuropsychiatric function and dysfunction. Moreover, these findings suggest an unrecognized role of Cnih3 in buffering against transcriptional effects of estrous, providing a candidate molecular mechanism to explain estrous-dependent phenotypes observed with Cnih3 loss.