Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anal Chem ; 89(14): 7742-7749, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28621526

RESUMO

Higher-order structure (HOS) is a crucial determinant for the biological functions and quality attributes of protein therapeutics. Mass spectrometry (MS)-based protein footprinting approaches play an important role in elucidating the relationship between protein biophysical properties and structure. Here, we describe the use of a combined method including hydrogen-deuterium exchange (HDX), fast photochemical oxidation of proteins (FPOP), and site-specific carboxyl group footprinting to investigate the HOS of protein and protein complexes. The work focuses on implementing complementary solution-phase footprinting approaches that differ in time scale, specificity for protein residue side chains vs backbone as well as selectivity for different residue types to map integratively the epitope of human interleukin-6 receptor (IL-6R) for two adnectins with distinct affinities (Kd, Adnectin1 ∼ 6.2 pM vs Kd, Adnectin2 ∼ 46 nM). Furthermore, the study evaluates the resultant conformation/dynamic change of IL-6R. The suggested epitope, which is conserved for adnectin1 and adnectin2 binding, is a flexible loop that connects two ß-strands in the cytokine-binding domain (DII) of IL-6R. We also found that adnectin1, the more strongly binding ligand, induces structural perturbations on two unstructured loops that are distally located beyond the epitope. Those changes are either attenuated or not detected for the case of adnectin2 binding. In addition to providing credibility in epitope determination, utilization of those combined approaches reveals the structural effects that can differentiate protein therapeutics with apparently similar biophysical properties.


Assuntos
Mapeamento de Epitopos , Pegadas de Proteínas , Receptores de Interleucina-6/química , Medição da Troca de Deutério , Humanos , Espectrometria de Massas , Ligação Proteica , Conformação Proteica
2.
Anal Chem ; 89(4): 2250-2258, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193005

RESUMO

Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).


Assuntos
Alanina/metabolismo , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Interleucina-23/metabolismo , Reações Antígeno-Anticorpo , Clonagem Molecular , Medição da Troca de Deutério , Fragmentos Fab das Imunoglobulinas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mutagênese , Oxirredução , Ligação Proteica
3.
Expert Rev Proteomics ; 12(2): 159-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711416

RESUMO

IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.


Assuntos
Terapia Biológica , Deutério/química , Hidrogênio/química , Interleucina-23/química , Biologia Computacional , Humanos , Interleucina-23/metabolismo , Espectrometria de Massas/métodos , Ligação Proteica , Conformação Proteica , Receptores de Interleucina/química
4.
J Org Chem ; 80(14): 7019-32, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26151079

RESUMO

Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.


Assuntos
Microssomos Hepáticos/metabolismo , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/metabolismo , Pró-Fármacos/síntese química , Ticlopidina/análogos & derivados , Fenômenos Biológicos , Clopidogrel , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Piperidinas/química , Inibidores da Agregação Plaquetária/química , Pró-Fármacos/química , Estereoisomerismo , Ticlopidina/síntese química , Ticlopidina/química , Ticlopidina/metabolismo
5.
Drug Discov Today Technol ; 13: 25-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26190680

RESUMO

Metabolomics has roots in the pharmaceutical industry that go back nearly three decades. Initially focused on applications in toxicology and disease pathology, more recent academic and commercial efforts have helped advance metabolomics as a tool to reveal the molecular basis of biological processes and pharmacological responses to drugs. This article will discuss areas where metabolomic technologies and applications are poised to have the greatest impact in the discovery and development of pharmaceuticals.


Assuntos
Descoberta de Drogas , Indústria Farmacêutica , Metabolômica , Humanos
6.
Anal Chem ; 86(8): 4033-40, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24661124

RESUMO

Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Algoritmos , Cromatografia com Fluido Supercrítico/instrumentação , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Pressão , Estereoisomerismo
7.
Rapid Commun Mass Spectrom ; 28(13): 1535-43, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24861605

RESUMO

RATIONALE: Liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays are increasingly being used for absolute quantitation of proteins due to high specificity and low cost. However, the major challenge for the LC/MS method is insufficient sensitivity. This paper details the strategies developed to maximize the sensitivity from aspects of chromatography, mass spectrometry, and sample preparation to achieve a highly sensitive LC/MS method. METHODS: The method is based on the LC/MS/MS measurement of a surrogate peptide generated from trypsin digestion of interferon-gamma-inducible protein-10 (IP-10). The sample preparation strategy involved selectively extracting IP-10 and removing high-abundance serum proteins through acidified protein precipitation (PPT). It was revealed in this work that these high-abundance serum proteins, if not separated from the protein of interest, could cause significant ionization saturation and high background noise in selected reaction monitoring (SRM), leading to a 100-fold higher lower limit of quantification (LLOQ). RESULTS: Our method demonstrated that the acidified PPT could be optimized to selectively extract the protein of interest with full recovery of 97% to 103%, while the high-abundance serum proteins could be effectively removed with minimal matrix effect of 90% to 93%. For the first time, a highly sensitive LC/MS method with a LLOQ of 31.62 pM for the quantitation of IP-10 has been achieved, which is a 100-fold improvement over the generic method. CONCLUSIONS: The described method offers excellent sensitivity with advantages of being antibody reagent independent and leads to significant cost and time savings. It has been successfully employed to determine both total and free IP-10 levels in human serum samples. This method development strategy may also be applied to other small proteins.


Assuntos
Quimiocina CXCL10/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas Sanguíneas/química , Quimiocina CXCL10/química , Formiatos , Humanos , Análise dos Mínimos Quadrados , Sensibilidade e Especificidade , Tripsina
8.
Rapid Commun Mass Spectrom ; 27(9): 940-6, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23592195

RESUMO

RATIONALE: Recombinant human G granulocyte-colony stimulating factor (rhG-CSF) produced in Escherichia coli is a non-glycosylated polypeptide containing five cysteine residues. The reported major disulfide (S-S) linkages in mature human G-CSF are C36 -C42 and C64 -C74 , leaving C17 as a free cysteine, which could potentially result in S-S scrambling. The purpose of this work is to illustrate different mass spectrometry (MS) approaches for characterization of S-S linkages in therapeutic proteins including S-S scrambling using rhG-CSF as a model protein. METHODS: Peptide mapping analysis of both non-reduced and reduced digests of rhG-CSF was performed to demonstrate the presence of S-S linked peptides and their corresponding reduced peptides. High mass accuracy measurements of these peptides provided the initial identifications of S-S linkages. Collision-induced dissociation (CID) and electron transfer dissociation (ETD) were used to fragment these peptides in order to obtain further sequence information and identify S-S linkages. RESULTS: S-S linked peptides and their corresponding reduced peptides correlating with major S-S linkages were observed. Peptides that correlated with other S-S linkages as a result of S-S scrambling were also observed. CONCLUSIONS: Presence of the reported major S-S linkages in rhG-CSF was confirmed. S-S scrambling was also observed in which C18 was involved in S-S linkages and C37 , C65 or C75 were present as free cysteines. This study demonstrates the practical utility of combining different MS methods for characterization of S-S linkages in therapeutic proteins.


Assuntos
Dissulfetos/análise , Fator Estimulador de Colônias de Granulócitos/química , Espectrometria de Massas/métodos , Alquilação , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Mapeamento de Peptídeos/métodos , Proteínas Recombinantes/química
9.
Anal Chem ; 83(23): 9033-8, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21995953

RESUMO

Unstable drug candidates often lead to complexity for both sample collection and bioanalysis. Dried blood spot (DBS) technology is believed to be a viable solution to address this problem. However, it is currently a challenge to evaluate compound stability on DBS due to its solid format. The observed compound loss on a DBS card could be degradation and/or incomplete recovery. Therefore, a reliable bioanalytical method which can differentiate recovery loss from degradation is necessary for such stability evaluation. In this paper, the stability of an unstable drug candidate (KAI-9803) in human blood was evaluated using DBS. A reliable approach to evaluating analyte stability on DBS was developed with an appropriate time-zero sample, a consistent DBS sample processing method, and a suitable positive control. Commercially available DBS cards were evaluated, and it was found that KAI-9803 degraded during the drying process. An in-house modified DBS card was developed and demonstrated to be able to stabilize KAI-9803 during the drying process by rapidly lowering the pH of the spotted blood sample. The storage stability of KAI-9803 in human blood on this new card has been established for at least 48 days at room temperature. This in-house modified DBS card could provide a generic approach for other compounds which require stabilization at a low pH.


Assuntos
Teste em Amostras de Sangue Seco , Peptídeos/sangue , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Temperatura
11.
Artigo em Inglês | MEDLINE | ID: mdl-18722827

RESUMO

The stereoselective determination of stereoisomers in biological samples provides vital information on stereospecific metabolism and pharmacokinetic profiles of the drugs. Despite the unique advantage and the great success of normal-phase (NP) HPLC for the separations of drug stereoisomers using polysaccharide-type chiral stationary phases (CSPs), the technique is rarely applied to quantitative HPLC-MS-MS bioanalysis. This is, at least in part, due to the incompatibility between the usual mobile phase (n-hexane or n-heptane) in normal-phase HPLC and the MS ionization sources which poses a potential detonation hazard. An environmentally friendly and nonflammable alternative solvent, ethoxynonafluorobutane (ENFB), was reported previously to potentially provide an ideal solution for combining the powers of stereoselective NP chromatographic separation and MS-MS detection. In this study, a stereoselective NP-HPLC-MS-MS method was developed using ENFB to quantify a pair of Bristol Myers Squibb (BMS) proprietary drug stereoisomers and their ketone metabolite for an in vitro study, which demonstrated, for the first time, the practical applicability and utility of ENFB for bioanalysis in pharmaceutical industry. The effects of different organic modifiers and temperature, as well as the comparison between ENFB and the usual solvent, heptane, for the separation, are discussed. The resolution of the stereoisomers was achieved using 63% of 3:1 mixture of ethanol and methanol with 37% ENFB on a Chiralpak AD-H column at 50 degrees C. High sensitivity was obtained using the MS-MS detection in the positive ion atmospheric pressure chemical ionization (APCI) mode. The lower limit of quantitation (LLOQ) for the first stereoisomer and the ketone metabolite was 5 ng/mL, and was 10 ng/mL for the second isomer in the human liver microsome-potassium phosphate buffer matrix. The linear dynamic range of 5-1000 ng/mL for both isomers and 10-1000 ng/mL for the metabolite were demonstrated with R2 > or =0.997. The precision of the analysis was <5% R.S.D. at or above the nominal concentration of 80 ng/mL, and <20% R.S.D. at 8 ng/mL. The mean bias was less than 15%. Extraction recovery and acceptable matrix interference were demonstrated using one isomer and the ketone, and better than 75% recovery and less than 25% ion suppression or interference were found. The method was successfully implemented for an in vitro intrinsic metabolic clearance study.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos , Butanos/química , Humanos , Hidrocarbonetos Fluorados/química , Taxa de Depuração Metabólica , Propanóis/isolamento & purificação , Reprodutibilidade dos Testes , Estereoisomerismo
12.
J Am Soc Mass Spectrom ; 29(1): 174-182, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971440

RESUMO

Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Proteínas tau/química , Anticorpos Monoclonais , Benzotiazóis/química , Sítios de Ligação , Medição da Troca de Deutério/métodos , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Microtúbulos/metabolismo , Conformação Proteica , Solventes/química , Espectrometria de Fluorescência , Proteínas tau/imunologia , Proteínas tau/metabolismo
13.
Assay Drug Dev Technol ; 5(2): 247-64, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17477833

RESUMO

An automated high throughput process, termed the MetFast assay, is described to assess in vitro the general microsomal cytochrome P450 beta-nicotinamide adenine dinucleotide phosphate-mediated first-pass metabolic stability of potential drug candidates as a utility for pharmaceutical profiling. Utilizing robotic protocols with a multiprobe liquid handler, compounds are incubated with liver microsomes from different species. Samples are then analyzed by in-line liquid chromatography (LC)-mass spectrometry (MS) to determine the amount of compound remaining after a certain time, which allows calculation of metabolism rates. To quantitatively assess large numbers of structurally diverse compounds by LC-MS, a strategy based on an iterative two-step process was devised. Initially compounds are qualitatively analyzed by LC-ultraviolet (UV)/MS (step 1) to determine purity (UV detection) and structural integrity (MS detection). This step ensures that only correct and verified compounds with sufficient purity are being assayed to obtain reproducible high data quality. In addition, all necessary information is gathered to automatically generate specific quantitative methods for the subsequent bioanalytical analysis of metabolic stability samples by LC-UV/MS (step 2). In-house-developed, highly flexible and sophisticated data management software, termed SmartReport, is utilized for automated qualitative and quantitative LC-MS analysis set-up, data processing, and results reporting. The integration of key aspects, inherent "universal" collision-induced dissociation settings of ion trap mass spectrometers for tandem mass spectrometric scan functions utilized for compound-specific and sensitive quantitative MS methods, generic fast-LC conditions, generic MS instrument settings, and the functionality of SmartReport software resulted in an analytical process that routinely provides reproducible high-quality metabolic stability data on structurally diverse compounds. Described here is the setup of the MetFast assay, and metabolic stability data from assay validation compounds are given.


Assuntos
Preparações Farmacêuticas/metabolismo , Cromatografia Líquida , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos , Indicadores e Reagentes , Espectrometria de Massas , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Controle de Qualidade , Reprodutibilidade dos Testes , Robótica , Software , Solventes , Espectrofotometria Ultravioleta
14.
J Chromatogr A ; 1487: 116-128, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28131592

RESUMO

Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Descoberta de Drogas/métodos , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Dicroísmo Circular , Descoberta de Drogas/instrumentação , Cinética , Espectrometria de Massas , Estereoisomerismo , Termodinâmica
15.
J Pharm Biomed Anal ; 138: 166-174, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28213177

RESUMO

Synthetic macrocyclic peptides with natural and unnatural amino acids have gained considerable attention from a number of pharmaceutical/biopharmaceutical companies in recent years as a promising approach to drug discovery, particularly for targets involving protein-protein or protein-peptide interactions. Analytical scientists charged with characterizing these leads face multiple challenges including dealing with a class of complex molecules with the potential for multiple isomers and variable charge states and no established standards for acceptable analytical characterization of materials used in drug discovery. In addition, due to the lack of intermediate purification during solid phase peptide synthesis, the final products usually contain a complex profile of impurities. In this paper, practical analytical strategies and methodologies were developed to address these challenges, including a tiered approach to assessing the purity of macrocyclic peptides at different stages of drug discovery. Our results also showed that successful progression and characterization of a new drug discovery modality benefited from active analytical engagement, focusing on fit-for-purpose analyses and leveraging a broad palette of analytical technologies and resources.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Descoberta de Drogas/métodos , Imageamento por Ressonância Magnética/métodos , Peptídeos/química , Aminoácidos/química
16.
J Am Soc Mass Spectrom ; 28(5): 795-802, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527097

RESUMO

Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Agregados Proteicos , Medição da Troca de Deutério/métodos , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química
17.
J Chromatogr A ; 1455: 133-139, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27286648

RESUMO

UV spectrophotometry is widely used to determine the molar extinction coefficients (MECs) of cytotoxic drugs as well as the drug antibody ratios (DARs) of antibody drug conjugates (ADCs). However, the unknown purity of a drug due to interfering impurities can lead to erroneous MECs and DARs. Hence, reliable methods to accurately determine purity and the MECs of drugs with limited quantity is urgently needed in Drug Discovery. Such a method has been developed. It achieves absolute purity and accurate MEC determination by a single automated HPLC analysis that uses less than 5µg of material. Specifically, analytical HPLC separation with online UV detection was used to resolve impurities and measure absorbance from only the compound of interest. Simultaneously, an online chemiluminescence nitrogen detector (CLND) was used to determine the concentration of the analyte. The MECs were then calculated from the absorbance and concentration results. The accuracy of the method was demonstrated using caffeine and a commercial cytotoxic drug, DM1. This approach is particularly suited to analyzing mixtures or samples with low purities. Excellent reproducibility was demonstrated by analyzing a proprietary drug with linker synthesized from different batches with very different levels of purity. In addition, the MECs of drug with linker, along with ADC peak areas measured from size exclusion chromatography (SEC), were used to calculate DARs for 21 in-house ADCs. The DAR results were consistent with those obtained by MS analysis.


Assuntos
Anticorpos/química , Antineoplásicos Fitogênicos/química , Imunoconjugados/química , Maitansina/análogos & derivados , Anticorpos/imunologia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Medições Luminescentes , Espectrometria de Massas , Maitansina/química , Nitrogênio/análise , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
18.
Drug Discov Today ; 10(8): 571-7, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837600

RESUMO

Molecular chirality is a fundamental consideration in drug discovery, one necessary to understand and describe biological targets as well as to design effective pharmaceutical agents. Enantioselective chromatography has played an increasing role not only as an analytical tool for chiral analyses, but also as a preparative technique to obtain pure enantiomers from racemates quickly from a wide diversity of chemical structures. Different enantioselective chromatography techniques are reviewed here, with particular emphasis on the most widespread high performance liquid chromatography (HPLC) and the rapidly emerging supercritical fluid chromatography (SFC) techniques. This review focuses on the dramatic advances in the chiral stationary phases (CSPs) that have made HPLC and SFC indispensable techniques for drug discovery today. In addition, screening strategies for rapid method development and considerations for laboratory-scale preparative separation are discussed and recent achievements are highlighted.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/tendências , Indústria Farmacêutica/tendências , Estereoisomerismo , Amilose/análogos & derivados , Amilose/química , Química Farmacêutica/métodos , Química Farmacêutica/tendências , Cromatografia Líquida de Alta Pressão/tendências , Cromatografia com Fluido Supercrítico/métodos , Indústria Farmacêutica/métodos , Fenilcarbamatos/química
19.
J Chromatogr A ; 1426: 133-9, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26674608

RESUMO

Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid.


Assuntos
Cromatografia Líquida/métodos , Fibronectinas/química , Histidina/química , Isótopos de Carbono , Química Farmacêutica , Cromatografia em Gel , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Espectrometria de Massas/métodos , Isótopos de Nitrogênio
20.
J Am Soc Mass Spectrom ; 26(10): 1791-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122520

RESUMO

Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.


Assuntos
Imunoconjugados/análise , Imunoconjugados/química , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa