RESUMO
Although the emergence of complex biomineralized forms has been investigated for over a century, still little is known on how single cells control morphology of skeletal structures, such as frustules, shells, spicules, or scales. We have run experiments on the shell formation in foraminifera, unicellular, mainly marine organisms that can build shells by successive additions of chambers. We used live imaging to discover that all stages of chamber/shell formation are controlled by dedicated actin-driven pseudopodial structures. Successive reorganization of an F-actin meshwork, associated with microtubular structures, is actively involved in formation of protective envelope, followed by dynamic scaffolding of chamber morphology. Then lamellar dynamic templates create a confined space and control mineralization separated from seawater. These observations exclude extracellular calcification assumed in selected foraminiferal clades, and instead suggest a semiintracellular biomineralization pattern known from other unicellular calcifying and silicifying organisms. These results give a challenging prospect to decipher the vital effect on geochemical proxies applied to paleoceanographic reconstructions. They have further implications for understanding multiscale complexity of biomineralization and show a prospect for material science applications.
Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Biomineralização/fisiologia , Foraminíferos/metabolismo , Proteínas de Protozoários/metabolismoRESUMO
Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ 'mineralization of extracellular matrix' attributed to hyaline rotaliid shells, or 'mineralization within intracellular vesicles' attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.
Assuntos
Foraminíferos , Microscopia Eletrônica de Varredura , Foraminíferos/metabolismo , Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Biomineralização , FilogeniaRESUMO
Our laboratory study looked into how pesticides affect the foraminifera species Heterostegina depressa and their obligatory algal endosymbionts. We incubated the foraminifera separately with different types of pesticides at varying concentrations (1 %, 0.01 % and 0.0001 %); we included the insecticide Confidor© (active substance: imidacloprid), the fungicide Pronto©Plus (tebuconazole), and the herbicide Roundup© (glyphosate). Our evaluation focused on the symbiont's photosynthetically active area (PA), and the uptake of dissolved inorganic carbon (DIC) and nitrogen (nitrate) to determine the vitality of the foraminifera. Our findings showed that even the lowest doses of the fungicide and herbicide caused irreparable damage to the foraminifera and their symbionts. While the insecticide only deactivated the symbionts (PA = 0) at the highest concentration (1 %), the fungicide, and herbicide caused complete deactivation even at the lowest levels provided (0.0001 %). The fungicide had the strongest toxic effect on the foraminiferal host regarding reduced isotope uptake. In conclusion, all pesticides had a negative impact on the holosymbiont, with the host showing varying degrees of sensitivity towards different types of pesticides.
Assuntos
Foraminíferos , Fungicidas Industriais , Herbicidas , Inseticidas , Praguicidas , Recifes de Corais , Foraminíferos/fisiologia , Praguicidas/toxicidade , Fungicidas Industriais/toxicidade , Herbicidas/toxicidadeRESUMO
Foraminifera are a group of mostly marine protists that form highly dynamic granular pseudopodia. Recent live experiments on foraminifera labelled with SiR-actin show that F-actin structures are involved in the morphogenesis of granuloreticulopodia and that pseudopodia contain small, motile granules referred to as SiR-actin-labelled granules (ALGs). They may either represent staining artifacts or an unusual form of organisation of actin filaments. To address this problem, we performed double staining of F-actin in fixed specimens of foraminifera using two fluorescent probes (SiR-actin and Phalloidin Atto 488) and analysed the level of co-localisation of their fluorescent signals. Additionally, we performed observations in polarised light to identify birefringence. The images obtained demonstrate similar staining patterns with both probes and birefringence in areas showing intensive fluorescence, thus, ALGs can no longer be considered as staining artifacts. They represent naturally occurring granular structures that contain F-actin and/or are actin-coated. ALGs likely contain F-actin that may play a role in endo-/exocytosis, pseudopodial movement, and/or in intracellular transport. We present a model, explaining their formation and possible functions in relation to other subcellular components. ALGs most likely consist of the adaptation involved in the morphogenesis of granular pseudopodia that predates in phylogeny the occurrence of the shell in foraminifera.